
Identifying Optimal Parameters for
Approximate Randomized Algorithms

Vimuth Fernando, Keyur Joshi, Darko Marinov, Sasa Misailovic
University of Illinois at Urbana-Champaign

WAX 2019

June 22, 2019, Phoenix, Arizona

Randomized Approximate Algorithms

Modern applications deal with large amounts
of data

Obtaining exact answers for such applications
is resource intensive

Randomized Approximate algorithms give a
“good enough” answer in a much more
efficient manner

Randomized Approximate Algorithms

Used in many domains

• HyperLogLog, Bloom filter - Data analytics

• Approximate matrix multiplication - Numerical linear algebra

• Locality sensitive hashing – Fingerpriting multimedia

Often sub-linear in space/ runtime

Come with analytically derived specifications of accuracy/performance.

• e.g., an algorithm will have small errors with high probability

Randomized Approximate Algorithms
Randomized approximate algorithms have attracted the attention of
many authors and researchers

Developers struggle to properly test/optimize implementations of these algorithms

Example: Count-min Sketch

• Count the frequency of unique elements in a large data set using
sub-linear space

• Provides an estimate of the frequency with a bounded error

x y z xx …Data set:

x : 95

y : 135

z : 935

Example: Count-min Sketch

• Count the frequency of unique elements in a data set using sub-linear
space

• Use (h * w) counters

hash1 0 0 0 0 ... 0

hash2 0 0 0 0 ... 0

... 0 0 0 0 ... 0

hashh 0 0 0 0 ... 0

w

h

Example: Count-min Sketch

• Count the frequency of unique elements in a data set using sub-linear
space

hash1 0 0 0 0 ... 0

hash2 0 0 0 0 ... 0

... 0 0 0 0 ... 0

hashh 0 0 0 0 ... 0

xData set:

Example: Count-min Sketch

• Count the frequency of unique elements in a data set using sub-linear
space

hash1 0 0 + 1 0 0 ... 0

hash2 0 0 0 0 + 1 ... 0

... 0 0 0 0 ... 0

hashh 0 + 1 0 0 0 ... 0

xData set:

Example: Count-min Sketch

• Count the frequency of unique elements in a data set using sub-linear
space

hash1 0 + 1 1 0 0 ... 0

hash2 0 0 0 1 + 1 ... 0

... 0 0 0 0 ... 0

hashh 1 0 0 + 1 0 ... 0

x yData set:

Example: Count-min Sketch

• Count the frequency of unique elements in a data set using sub-linear
space

x y z xx …

hash1 50 200 12 454 ... 64

hash2 12 213 21 132 ... 7657

... 49 842 12 23 ... 67

hashh 343 5 121 23 ... 435

Data set:

Example: Count-min Sketch

• Count the frequency of unique elements in a data set using sub-linear
space

hash1 50 200 12 454 ... 64

hash2 12 213 21 132 ... 7657

... 49 842 12 23 ... 67

hashh 343 5 121 23 ... 435

x y z yx …

xQuery:

Data set:

Example: Count-min Sketch

• Count the frequency of unique elements in a data set using sub-linear
space

hash1 50 200 12 454 ... 64

hash2 12 213 21 132 ... 7657

... 49 842 12 23 ... 67

hashh 343 5 121 23 ... 435

x y z yx …

xQuery:

Estimate count: min(343, 200, 132, …) = 132

Data set:

Count-min Sketch Accuracy Specification*

Correctness Guarantee:

• 𝑒𝑟𝑟𝑜𝑟 − difference between estimate and actual count

• 𝑁 − size of the data set

• Number of hash functions (h) and the number of bins per hash (w) is
set using the values for 𝜖 and δ

w = ⌈e/ϵ⌉, h = ⌈ln(1/δ)⌉

*G. Cormode and S. Muthukrishnan, “An improved data stream summary: the Count-Min sketch and its applications,”
Journal of Algorithms, vol. 55, 2005

AxProf: Algorithmic Profiling for Randomized
Approximate Programs*

Tests if the implementations satisfies the algorithm’s specifications

The specification provided in a formal notation

• Generate inputs according to different distribution

• Gather samples and aggregate data

• Select appropriate statistical test

*Keyur Joshi, Vimuth Fernando, and Sasa Misailovic. 2019. Statistical algorithmic profiling for randomized approximate
programs. (ICSE '19)

AxProf : Count-min Sketch Accuracy Testing

Math Specification: 𝑃 𝑒𝑟𝑟𝑜𝑟 < 𝑁 ∗ 𝜖 > 1 − δ

AxProf specification:

Input list of (list of real);
Output list of (list of int);

forall i in unique(Input)

Probability over runs

[error(i, Input, Output) < |Input| * epsilon] > 1 - delta

AxProf: PASS/FAIL

Setting algorithm parameters

How to set number of hash functions (h)
and number of bins (w)?

Analytical specification:

P[error < N * 𝜖] > 1 – δ

To achieve this guarantee with minimum
memory usage

w = ⌈2.718/𝜖 ⌉, h = ⌈ln(1/δ)⌉

Example:

P[error < 5000] > 0.99 ⇒ w=534, h=5
Observed errors for a randomly generated dataset in an

implementation of Count-min

Analytical Error Guarantees Are Conservative

Take into account worst-case scenarios or perform average case analysis for a large
input domain

Algorithm implementers can implement different behavior than specified

• Use of polyalgorithms
• Allocate more resources than required (Eg: Bigger arrays)

For some applications it is not possible to derive analytical models due to complex
interactions among parameters (e.g., SFFT)

Alternative: Build empirical models to identify algorithm parameter values that satisfy
a user's accuracy requirements while optimally utilizing resources (And satisfying
the analytical accuracy guarantee)

Setting algorithm parameters: Count-min

Observed errors for a randomly generated dataset in an
implementation of Count-min

Setting algorithm parameters: Count-min

Count-min Sketch Empirical Model of Accuracy

• Identify a representative input set – Lists of integers drawn from Zipf
distributions (using AxProf input generator)

• Identify the possible configurations – the ranges of tunable parameters -
e.g., w:[1-1000], h:[1-10]

• A tuning objective for each algorithm - optimize memory usage

• We used OpenTuner to identify optimal parameter values for error
thresholds that also satisfy the analytical specification

Building Empirical Models

Use Autotuning to search for
better algorithm parameters

Confirm that the analytical
guarantee is still satisfied with

AxProf

If found

Start with the default parameters
(from analytical model)

If not

Record

For each accuracy
threshold

Building Empirical Models

Use Autotuning to search for
better algorithm parameters

Confirm that the analytical
guarantee is still satisfied with

AxProf

If found

Start with the default parameters
(from analytical model)

Record

For each accuracy
threshold

Used an input
generator

from AxProf to
generate random

datasetsIf not

Setting Algorithm Parameters: Count-min

The algorithm finishes 30% faster and
uses 50% less memory

(P[error < 5000] > 0.99 ⇒ w=396, h=3)

Observed errors for a randomly generated dataset in an
implementation of Count-min

Benefits of an Empirical(tuned) Model

For the specification :
P[error < N * Epsilon] > 1 - δ

Future Directions: Adaptive Algorithms

• When the algorithm accuracy is data dependent - algorithm
parameters can be set based on the input to achieve optimal
performance

• However, in many of the algorithms the input is very large, therefore
pre-analyzing the data may not be possible

• Requires low cost initial analysis of huge data sets

Future Directions: Runtime Monitoring

• An implementation can periodically estimate the error at runtime

• If that estimate starts to exceed an acceptable threshold, issue
warnings or change to a more accurate configuration of the algorithm

• Error estimates need to be low cost for benefits

Future Directions: Comparing Implementations

• Two implementations that satisfy the same analytical specifications
of the algorithm can have widely varying behavior

• Optimal behavior can be used to compare implementations of the
same algorithm

Conclusion
Randomized approximate algorithms have conservative analytical
probabilistic accuracy specification

Hybrid models of accuracy/performance can provide better resource
usage while providing similar guarantee

Future directions

• Adaptive algorithms

• Runtime monitoring

• Reducing offline training time

• Selecting among multiple implementations

