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Randomized Approximate Algorithms

Modern applications deal with large amounts 
of data

Obtaining exact answers for such applications 
is resource intensive

Randomized Approximate algorithms give a 
“good enough” answer in a much more 
efficient manner



Randomized Approximate Algorithms

Used in many domains

• HyperLogLog, Bloom filter - Data analytics

• Approximate matrix multiplication - Numerical linear algebra

• Locality sensitive hashing – Fingerpriting multimedia

Often sub-linear in space/ runtime

Come with analytically derived specifications of accuracy/performance. 

• e.g., an algorithm will have small errors with high probability



Randomized Approximate Algorithms
Randomized approximate algorithms have attracted the attention of 
many authors and researchers

Developers struggle to properly test/optimize implementations of these algorithms



Example: Count-min Sketch

• Count the frequency of unique elements in a large data set using 
sub-linear space

• Provides an estimate of the frequency with a bounded error

x y z xx …Data set: 

x :     95 

y :     135 

z :     935 



Example: Count-min Sketch

• Count the frequency of unique elements in a data set using sub-linear 
space

• Use (h * w) counters

hash1 0 0 0 0 ... 0

hash2 0 0 0 0 ... 0

... 0 0 0 0 ... 0

hashh 0 0 0 0 ... 0

w

h



Example: Count-min Sketch

• Count the frequency of unique elements in a data set using sub-linear 
space

hash1 0 0 0 0 ... 0

hash2 0 0 0 0 ... 0

... 0 0 0 0 ... 0

hashh 0 0 0 0 ... 0

xData set: 



Example: Count-min Sketch

• Count the frequency of unique elements in a data set using sub-linear 
space

hash1 0 0 + 1 0 0 ... 0

hash2 0 0 0 0 + 1 ... 0

... 0 0 0 0 ... 0

hashh 0 + 1 0 0 0 ... 0

xData set: 



Example: Count-min Sketch

• Count the frequency of unique elements in a data set using sub-linear 
space

hash1 0 + 1 1 0 0 ... 0

hash2 0 0 0 1 + 1 ... 0

... 0 0 0 0 ... 0

hashh 1 0 0 + 1 0 ... 0

x yData set: 



Example: Count-min Sketch

• Count the frequency of unique elements in a data set using sub-linear 
space

x y z xx …

hash1 50 200 12 454 ... 64

hash2 12 213 21 132 ... 7657

... 49 842 12 23 ... 67

hashh 343 5 121 23 ... 435

Data set: 



Example: Count-min Sketch

• Count the frequency of unique elements in a data set using sub-linear 
space

hash1 50 200 12 454 ... 64

hash2 12 213 21 132 ... 7657

... 49 842 12 23 ... 67

hashh 343 5 121 23 ... 435

x y z yx …

xQuery:

Data set: 



Example: Count-min Sketch

• Count the frequency of unique elements in a data set using sub-linear 
space

hash1 50 200 12 454 ... 64

hash2 12 213 21 132 ... 7657

... 49 842 12 23 ... 67

hashh 343 5 121 23 ... 435

x y z yx …

xQuery:

Estimate count: min(343, 200, 132, … ) = 132

Data set: 



Count-min Sketch Accuracy Specification*

Correctness Guarantee:

• 𝑒𝑟𝑟𝑜𝑟 − difference between estimate and actual count

• 𝑁 − size of the data set

• Number of hash functions (h) and the number of bins per hash (w) is 
set using the values for 𝜖 and δ

w = ⌈e/ϵ⌉, h = ⌈ln(1/δ)⌉

*G. Cormode and S. Muthukrishnan, “An improved data stream summary: the Count-Min sketch and its applications,” 
Journal of Algorithms, vol. 55, 2005



AxProf: Algorithmic Profiling for Randomized 
Approximate Programs*

Tests if the implementations satisfies the algorithm’s specifications

The specification provided in a formal notation

• Generate inputs according to different distribution

• Gather samples and aggregate data

• Select appropriate statistical test

*Keyur Joshi, Vimuth Fernando, and Sasa Misailovic. 2019. Statistical algorithmic profiling for randomized approximate 
programs. (ICSE '19)



AxProf : Count-min Sketch Accuracy Testing

Math Specification: 𝑃 𝑒𝑟𝑟𝑜𝑟 < 𝑁 ∗ 𝜖 > 1 − δ

AxProf specification:

Input list of (list of real);
Output list of (list of int);

forall i in unique(Input)

Probability over runs 

[error(i, Input, Output) < |Input| * epsilon] > 1 - delta

AxProf: PASS/FAIL



Setting algorithm parameters

How to set number of hash functions (h) 
and number of bins (w)?

Analytical specification:

P[ error < N * 𝜖] > 1 – δ

To achieve this guarantee with minimum 
memory usage

w = ⌈2.718/𝜖 ⌉, h = ⌈ln(1/δ)⌉

Example:

P[ error < 5000] > 0.99 ⇒ w=534, h=5
Observed errors for a randomly generated dataset in an 

implementation of Count-min



Analytical Error Guarantees Are Conservative

Take into account worst-case scenarios or perform average case analysis for a large 
input domain

Algorithm implementers can implement different behavior than specified 

• Use of polyalgorithms
• Allocate more resources than required (Eg: Bigger arrays)

For some applications it is not possible to derive analytical models due to complex 
interactions among parameters (e.g., SFFT)

Alternative: Build empirical models to identify algorithm parameter values that satisfy 
a user's accuracy requirements while optimally utilizing resources (And satisfying 
the analytical accuracy guarantee)



Setting algorithm parameters: Count-min

Observed errors for a randomly generated dataset in an 
implementation of Count-min



Setting algorithm parameters: Count-min



Count-min Sketch Empirical Model of Accuracy

• Identify a representative input set – Lists of integers drawn from Zipf
distributions (using AxProf input generator)

• Identify the possible configurations – the ranges of tunable parameters -
e.g., w:[1-1000], h:[1-10]

• A tuning objective for each algorithm - optimize memory usage

• We used OpenTuner to identify optimal parameter values for error 
thresholds that also satisfy the analytical specification



Building Empirical Models

Use Autotuning to search for 
better algorithm parameters

Confirm that the analytical 
guarantee is still satisfied with 

AxProf

If found

Start with the default parameters
(from analytical model)

If not

Record

For each accuracy 
threshold



Building Empirical Models

Use Autotuning to search for 
better algorithm parameters

Confirm that the analytical 
guarantee is still satisfied with 

AxProf

If found

Start with the default parameters
(from analytical model)

Record

For each accuracy 
threshold

Used an input 
generator 

from AxProf to 
generate random 

datasetsIf not



Setting Algorithm Parameters: Count-min

The algorithm finishes 30% faster and 
uses 50% less memory

(P[ error < 5000] > 0.99 ⇒ w=396, h=3)

Observed errors for a randomly generated dataset in an 
implementation of Count-min



Benefits of an Empirical(tuned) Model

For the specification :
P[ error < N * Epsilon] > 1 - δ



Future Directions: Adaptive Algorithms

• When the algorithm accuracy is data dependent - algorithm 
parameters can be set based on the input to achieve optimal 
performance

• However, in many of the algorithms the input is very large, therefore 
pre-analyzing the data may not be possible

• Requires low cost initial analysis of huge data sets



Future Directions: Runtime Monitoring

• An implementation can periodically estimate the error at runtime

• If that estimate starts to exceed an acceptable threshold, issue 
warnings or change to a more accurate configuration of the algorithm

• Error estimates need to be low cost for benefits



Future Directions: Comparing Implementations

• Two implementations that satisfy the same analytical specifications 
of the algorithm can have widely varying behavior

• Optimal behavior can be used to compare implementations of the 
same algorithm



Conclusion
Randomized approximate algorithms have conservative analytical 
probabilistic accuracy specification

Hybrid models of accuracy/performance can provide better resource 
usage while providing similar guarantee

Future directions

• Adaptive algorithms

• Runtime monitoring

• Reducing offline training time

• Selecting among multiple implementations


