
Aloe: Verifying Reliability of
Approximate Programs in the

Presence of Recovery Mechanisms
Keyur Joshi, Vimuth Fernando, and Sasa Misailovic

University of Illinois at Urbana-Champaign

CGO 2020

CCF-1629431
CCF-1703637
CCF-1846354

HR0011-18-C-0122

Unreliable Hardware – Transient Errors

Image from “Inter-Agency Workshop on HPC Resilience at Extreme Scale”, DoD, ‘12

Architects make great efforts
to minimize errors

Some errors slip through the
cracks – silently corrupt
computation results

Process size vs. error rate

Big systems
fail due to scale

Small systems
fail due to low voltage/power

Heterogeneous systems
have components with

varying reliability

Images from Wikipedia and publicdomainvectors.org

Rugged environments
radiation, temperature, etc.

Transient
Errors are
Everywhere

Reliability

Unreliable
Hardware

Reliable
Hardware

𝑝 1 − 𝑝

Reliability
Program Program

Exact
Answer

Exact
Answer

Inexact
Answer

Reliability is the probability of obtaining the exact answer

100% Exactness
Is Not Always
Required!

Media Processing

Machine Learning

Images from Wikipedia

Large-Scale Graph
Processing

Approximations for
NP-Complete

Problems

But We Do Need Quality Control…

20% 40% 60% 80% 99% 99.9%90%

% Pixels
computed

exactly

How do we increase
reliability of programs on

unreliable hardware?

Lightweight
Check and
Recover

z = x*y
z’ = x*y
z==z’ ?

Code
Re-Execution
(SWIFT, DRIFT,

Shoestring)

s = SAT(p)
verify(s,p) ?

Verification
(NP-Complete)

y = foo(x)
DNN(x,y) ?

Anomaly
Detection

(Topaz, Rumba)

y = foo(x)
hw_err_flg ?

Hardware Error Flag
(Relax)

The Try-Check-Recover Mechanism

Some research languages1,2 expose Try-Check-Recover mechanisms:

try { solution = SATSolve(problem) }

check { satisfies(problem, solution) }

recover { solution = SATSolve(problem) }

Unreliable code

Checks for errors

Recovery code

1“Relax”, M. de Kruijf, S. Nomura, and K. Sankaralingam, ISCA ’10 2“Topaz”, S. Achour and M. Rinard, OOPSLA ‘15

How do we analyze
programs to ensure that

they are sufficiently
reliable?

Static Reliability Analysis of Programs1

output = program(input)

Prove:
ℛ output ≥ 0.99 ⋅ ℛ input

1“Rely”, M. Carbin, S. Misailovic, and M. Rinard, OOPSLA ‘13

Does not contain
try-check-recover

How do we do reliability
analysis of programs with

checks and recovery
mechanisms in a formal

manner?

Aloe

The first static reliability analysis of programs with recover blocks

Supports recovery blocks that re-execute the try computation

Supports arrays, conditionals, and bounded loops

Supports various types of error checkers

Aloe Syntax

Modelling Unreliable Computations

Aloe models unreliable computations using probabilistic choice:

var = e_exact [p] e_inexact

z = x+y [p] rnd() // instruction level1

z = foo(x) [p] foo_err(x) // function level2

z = 1.0 [p] rnd() // unreliable memory operations3

𝑝
1 − 𝑝

1“EnerJ”, A. Sampson et al., PLDI ’11 2“Rumba”, D. Khudia et al., ISCA ’15 3“Replica”, V. Fernando et al., ASPLOS ‘19

Hardware Specifications (Example)1

1“EnerJ”, A. Sampson et al., PLDI ‘11

Aloe Reliability Analysis

Aloe’s analysis is based on that of Rely1

{0.999 ⋅ ℛ x,y ≥ 0.99}

z = x*y [0.999] rnd();

ℛ z ≥ 0.99

1M. Carbin, S. Misailovic, and M. Rinard, OOPSLA ‘13

Reliability
Postcondition

Reliability
Precondition

Example – Sorting on Unreliable Hardware

try {

output = quicksort(arr) [ptry] scramble(arr);

}

check { sorted(output) }

recover {

output = quicksort(arr) [prec] scramble(arr);

}

We want output to be correctly sorted with probability ≥ 𝑟

recover

Possible Execution Paths

output =
quicksort(arr)

[ptry]
scramble(arr);

output =
quicksort(arr)

[prec]
scramble(arr);

𝑝𝑡𝑟𝑦

error
check fail

1 − 𝑝𝑡𝑟𝑦 ⋅ 𝑝𝑟𝑒𝑐

1 − 𝑝𝑡𝑟𝑦 ⋅ 1 − 𝑝𝑟𝑒𝑐

try
+

check

Aloe Precondition Generation

𝑝𝑡𝑟𝑦 + 1 − 𝑝𝑡𝑟𝑦 ⋅ 𝑝𝑟𝑒𝑐 ⋅ ℛ arr ≥ 𝑟

try {

output = quicksort(arr) [ptry] scramble(arr);

}

check { sorted(output) }

recover {
𝑝𝑟𝑒𝑐 ⋅ ℛ arr ≥ 𝑟

output = quicksort(arr) [prec] scramble(arr);
ℛ output ≥ 𝑟

}
ℛ output ≥ 𝑟

Detour – Error-Free Rate of try

try {
0.99 ⋅ ℛ w,y ≥ 𝑟

x = y*2 [0.99] rnd();

z = w+y [0.99] rnd();
ℛ z ≥ 𝑟

} check { f(w,x,y,z) }

check detects errors in any part of try

Unreliable computation of x affects the probability that check passes!

Aloe separately analyses the probability that try executes correctly in its entirety

Aloe Precondition Generation

𝑝𝑡𝑟𝑦 + 1 − 𝑝𝑡𝑟𝑦 ⋅ 𝑝𝑟𝑒𝑐 ⋅ ℛ arr ≥ 𝑟

try {

output = quicksort(arr) [ptry] scramble(arr);

}

check { sorted(output) }

recover {
𝑝𝑟𝑒𝑐 ⋅ ℛ arr ≥ 𝑟

output = quicksort(arr) [prec] scramble(arr);
ℛ output ≥ 𝑟

}
ℛ output ≥ 𝑟

Error-free rate of try:
𝑝𝑡𝑟𝑦

recover

Possible Execution Paths (𝑝𝑡𝑟𝑦 = 𝑝𝑟𝑒𝑐 = 0.99)

output =
quicksort(arr)

[0.99]
scramble(arr);

output =
quicksort(arr)

[0.99]
scramble(arr);

0.99

error
check fail

0.01 ⋅ 0.99

0.01 ⋅ 0.01

Aloe calculates total
probability of correct output:
0.99 + 0.0099 = 0.9999

try
+

check

Combining Preconditions

recover {
0.99 ⋅ ℛ w,y,z ≥ 𝑟

0.99 ⋅ ℛ w,y ≥ 𝑟 ∧ 0.999 ⋅ ℛ y,z ≥ 𝑟

if (*) {

x = y*w [0.99] rnd();

} else {

x = y+z [0.999] rnd();

}
ℛ x ≥ 𝑟

}

Complex Postconditions

0.9999 ⋅ 𝑝1 ⋅ ℛ y,z ≥ 𝑟1 ∧ 𝑝2 ⋅ ℛ y ≥ 𝑟2
try {

x = y*z [0.99] rnd();

}

check { f(x,y,z) }

recover {

x = y*z [0.99] rnd();

}
𝑝1 ⋅ ℛ x ≥ 𝑟1 ∧ 𝑝2 ⋅ ℛ y ≥ 𝑟2

Aloe Assumptions – Re-execution

Aloe expects that recover re-executes the code in try

The reliability of statements in try and recover may differ

Why? Impossible to prove using Rely’s logic that try and recover
perform the same computation

If such a proof is already available, then Aloe’s analysis remains valid
even for syntactically distinct try and recover

Aloe Assumptions – Idempotence

Aloe expects that the computation in try is idempotent

Idempotent – can be run multiple times without changing the correct
result

E.g. x=y+z ✓ x=x+z ✗

Why? Otherwise try can modify the result of executing recover

Handling Control Flow – Same as in Rely

Rely Precondition Generation for Control Flow

Using If-Then for Recovery Mechanisms

Prior analyses (Rely) expressed recovery mechanisms using if-then
statements

output = quicksort(list) [ptry] scramble(list);

if (! sorted(output))

{

output = quicksort(list) [prec] scramble(list);

}

Using If-Then for Recovery Mechanisms

Rely treats if-then as a nondeterministic choice

Case 1:

output = quicksort(list) [ptry] scramble(list);

Case 2:

output = quicksort(list) [ptry] scramble(list);

output = quicksort(list) [prec] scramble(list);

Using If-Then for Recovery Mechanisms

Rely analyses the reliability of each case separately

Case 1: output sorted correctly with probability 𝑝𝑡𝑟𝑦

output = quicksort(list) [ptry] scramble(list);

Case 2: output sorted correctly with probability 𝑝𝑟𝑒𝑐
output = quicksort(list) [ptry] scramble(list);

output = quicksort(list) [prec] scramble(list);

Using If-Then for Recovery Mechanisms

Rely then retains the most conservative case

Overall reliability: min 𝑝𝑡𝑟𝑦 , 𝑝𝑟𝑒𝑐

Compare to Aloe’s calculated

reliability using try-check-recover:

𝑝𝑡𝑟𝑦 + 1 − 𝑝𝑡𝑟𝑦 ⋅ 𝑝𝑟𝑒𝑐

Imperfect Checkers

Many checkers are imperfect – may not precisely detect errors

Code re-execution and comparison

• “SWIFT”, G. Reis et al., CGO ‘05

• “Shoestring”, S. Feng et al., ASPLOS ’10

Error Prediction

• “Rumba”, D. Khudia et al., ISCA ‘15

Anomaly detection

• “Topaz”, S. Achour and M. Rinard, OOPSLA ‘15

May detect
nonexistent errors

May not detect actual
errors, may detect
nonexistent errors

Probabilities
Provided
to Aloe

False Positives / False Negatives

try
executes

check
executes

True
Negative

False
Positive

check
executes

False
Negative

True
Positive

False Positive / False Negative Rates

For some checkers, these rates can be determined analytically

• E.g. approximate sorted-ness checks provide statistical guarantees

For other checkers, these rates must be determined empirically

• E.g. outlier detection1, DNNs2 which require pre-training

• Probabilities of false positives/negatives are estimated from
training/testing data

• Aloe’s analysis is only valid for similar distribution of input data

1“Topaz”, S. Achour and M. Rinard, OOPSLA ’15 2”Approximate Checkers”, A. Mahmoud et al., WAX ‘19

Example – Unreliable Multiplier Hardware

try {

z = x*y [ptry] rnd();

}

check {

z == (x*y [ptry] rnd());

}

recover {

z = x*y [prec] rnd();

}

try multiplies x and y in an
unreliable manner

check re-executes the
computation on same hardware

We want z to be exact with
probability ≥ 𝑟

Execution Paths

z =
x*y
[ptry]
rnd();

z ==
x*y
[ptry]
rnd();

z ==
x*y
[ptry]
rnd();

𝑝𝑡𝑟𝑦
2

𝜖

z =
x*y
[prec]
rnd();

1 − 𝑝𝑡𝑟𝑦
2
− 𝜖 ⋅ 𝑝𝑟𝑒𝑐

1 − 𝑝𝑡𝑟𝑦
2
− 𝜖 ⋅ 1 − 𝑝𝑟𝑒𝑐

try

check

check

recover

Aloe Precondition Generation

𝑝𝑡𝑟𝑦
2
+ 1 − 𝑝𝑡𝑟𝑦

2
− 𝜖 ⋅ 𝑝𝑟𝑒𝑐 ⋅ ℛ x,y ≥ 𝑟

try {
z = x*y [ptry] rnd();

}
check { z == (x*y [ptry] rnd()); }
recover {

𝑝𝑟𝑒𝑐 ⋅ ℛ x,y ≥ 𝑟

z = x*y [prec] rnd();
}

ℛ z ≥ 𝑟

True Negative:
𝑝𝑡𝑟𝑦

False Positive:
1 − 𝑝𝑡𝑟𝑦

False Negative:
𝜖 ≈ 0

True Positive:
1 − 𝜖

Error-free rate of try:
𝑝𝑡𝑟𝑦

Benchmarks

Benchmark End-to-End Computation Kernel Computation

PageRank PageRanks of graph nodes Update PageRank of one node

Scale Upscale an image One pixel of upscaled image

Blackscholes Prices of stock options Price of one stock option

SSSP Single Source Shortest Path One iteration for one node

BFS Breadth First Search One search iteration for one node

SOR Successive Over-Relaxation One update for one element

Motion Motion estimation Similarity calculation for one block

Sobel Edge detection filter One pixel of filtered image

try-check-recover

Methodology

We model an architecture having multiple available reliability levels1

Reliability of arithmetic operations:

try – 0.999 1

recover – 0.9999 1

1“EnerJ”, A. Sampson et al., PLDI ‘11

Methodology

Perfect checkers: we simulate hardware support for detecting errors1,2

Imperfect checkers: we experiment with different false
positive/negative rates from Topaz3

We compare Aloe’s analysis results to Rely

Rely uses if-then instead of try-check-recover

1“Relax”, M. de Kruijf et al., ISCA ’10 2”Argus”, A. Meixner et al., MICRO ’07 3S. Achour and M. Rinard, OOPSLA ’15

Reliability Calculated by Aloe (Perfect Checker)

Kernel-level Reliability End-to-End Reliability

Benchmark Aloe Rely Aloe Rely Aloe Time

PageRank 0.9999 0.9531 ≥ 0.99 ≈ 0.00 23.33s

Scale 0.9999 0.9891 ≥ 0.99 ≈ 0.00 10.48s

Blackscholes 0.9999 0.9871 ≥ 0.99 ≈ 0.00 6.51s

SSSP 0.999999 0.9920 ≥ 0.99 ≈ 0.00 18.60s

BFS 0.99999 0.9227 ≥ 0.99 ≈ 0.00 15.22s

SOR 0.99999 0.9950 ≥ 0.99 ≈ 0.00 21.02s

Motion 0.9999 ≈ 0.00 ≥ 0.99 ≈ 0.00 4.42s

Sobel 0.9999 0.9930 ≥ 0.99 ≈ 0.00 2.10s

More in the Paper

• error-free rate analysis of try

• Several additional examples

• Additional evaluation details
• Testing setup

• Unreliable checker and empirical analysis results

• [Appendix] Semantics and Aloe soundness proof

Conclusion

Aloe is the first static analysis of reliability of programs with recovery
mechanisms

We analyzed eight kernels and end-to-end benchmarks with recovery
mechanisms

Aloe can verify useful reliability bounds for all benchmarks

