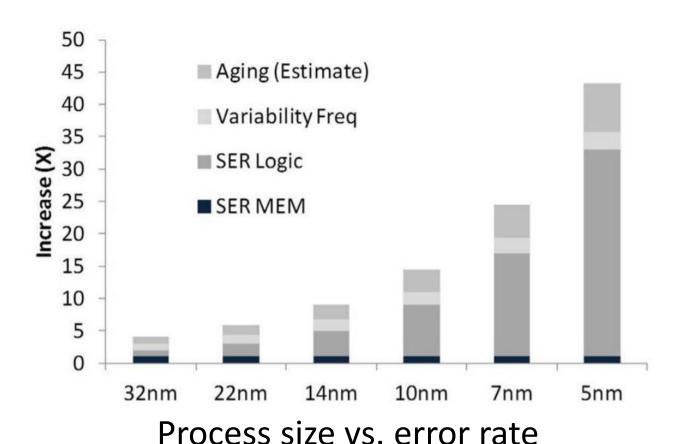


Aloe: Verifying Reliability of Approximate Programs in the Presence of Recovery Mechanisms

Keyur Joshi, Vimuth Fernando, and Sasa Misailovic University of Illinois at Urbana-Champaign

CGO 2020

Unreliable Hardware – Transient Errors

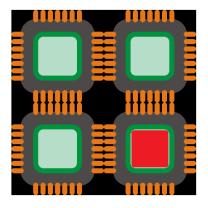


Architects make great efforts to minimize errors

Some errors slip through the cracks – silently corrupt computation results

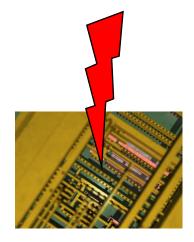
Image from "Inter-Agency Workshop on HPC Resilience at Extreme Scale", DoD, '12

Big systems fail due to scale

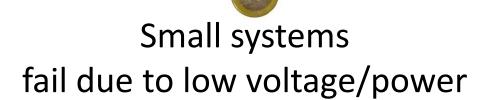


Heterogeneous systems have components with varying reliability

Transient
Errors are
Everywhere

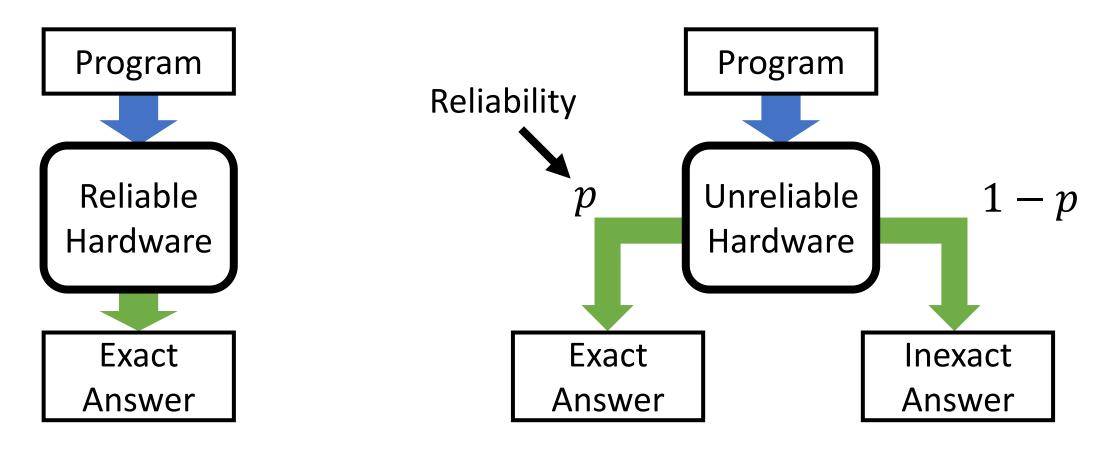


Rugged environments radiation, temperature, etc.



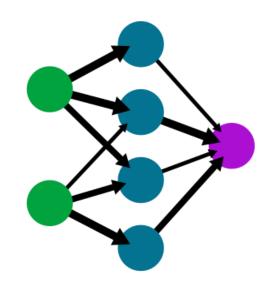
Images from Wikipedia and publicdomainvectors.org

Reliability

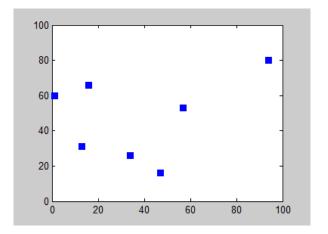


Reliability is the probability of obtaining the exact answer

Media Processing

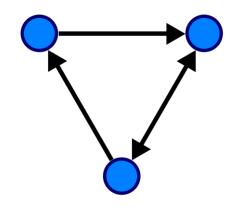


Machine Learning



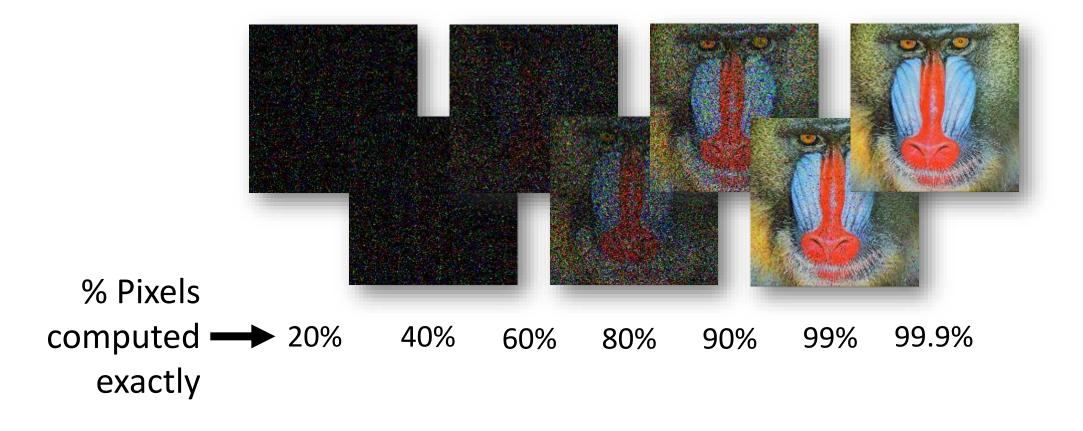
Approximations for NP-Complete Problems

100% Exactness Is **Not** Always Required!



Large-Scale Graph Processing

But We **Do** Need Quality Control...



How do we increase reliability of programs on unreliable hardware?

```
z = x*y
z' = x*y
z==z'?
```

Code Re-Execution (SWIFT, DRIFT, Shoestring)

y = foo(x)DNN(x,y)?

Anomaly
Detection
(Topaz, Rumba)

```
Lightweight
Check and
Recover
```

```
y = foo(x)
hw_err_flg ?
```

Hardware Error Flag (Relax)

```
s = SAT(p)
verify(s,p) ?
```

Verification (NP-Complete)

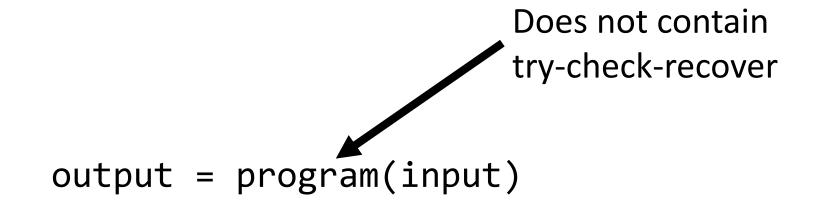
The Try-Check-Recover Mechanism

Some research languages^{1,2} expose *Try-Check-Recover mechanisms*:

```
try { solution = SATSolve(problem) } ← Unreliable code
check { satisfies(problem, solution) } ← Checks for errors
recover { solution = SATSolve(problem) } ← Recovery code
```

How do we analyze programs to ensure that they are sufficiently reliable?

Static Reliability Analysis of Programs¹



Prove:
$$\{\mathcal{R}(\text{output}) \geq 0.99 \cdot \mathcal{R}(\text{input})\}$$

How do we do reliability analysis of programs with checks and recovery mechanisms in a formal manner?

Aloe

The first static reliability analysis of programs with recover blocks

Supports recovery blocks that re-execute the try computation

Supports arrays, conditionals, and bounded loops

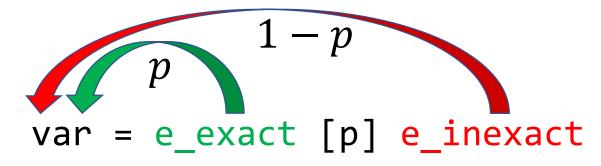
Supports various types of error checkers

Aloe Syntax

```
\in \mathbb{N}
                                quantities
                                                             recovery \rightarrow
     \in \mathbb{N} \cup \mathbb{F}
                                values
                                                               redo[n]
                                                                                                             redo up to n times
      \in [0, 1.0]
                                probability
                                                               redo[\psi]
                                                                                                             redo on different reliability model
x, b \in Var
                                variables
                                                               S
                                                                                                             other (custom) recovery
                                array variables
      ∈ ArrVar
      ∈ Func
                                external functions
                                                             S \rightarrow
                                arithmetic operators
     \in \{+,-,\ldots\}
                                                               skip
                                                                                                             empty program
                                                               x = F_{YD}
                                                                                                             assignment
                                                                                                             probabilistic choice
Exp \rightarrow m \mid x \mid f(Exp^*) \mid
                                expressions
                                                                x = Exp[r] Exp
         (Exp) \mid Exp \ op \ Exp
                                                                                                             sequence
                                                               x = a[Exp^+]
                                                                                                             array load
     → int<n> | float<n> basic types
                                                               a[Exp^+] = Exp
                                                                                                             array store
    \rightarrow t x | t a[n^+] |
                                                               if Exp \{S\} else \{S\}
                                variable
                                                                                                             branching
                                declarations
         D;D
                                                               repeat n {S}
                                                                                                             repeat n times
                                                               x = (T)Exp
                                                                                                             cast
                                                                try {S} check {Exp} recover {recovery}
     \rightarrow D;S
                                                                                                             pry-check-recover
                                program
```

Modelling Unreliable Computations

Aloe models unreliable computations using *probabilistic choice*:



```
z = x+y [p] rnd() // instruction level<sup>1</sup>
z = foo(x) [p] foo err(x) // function level<sup>2</sup>
z = 1.0 [p] rnd() // unreliable memory operations<sup>3</sup>
```

Hardware Specifications (Example)¹

	Mild	Medium	Aggressive
DRAM refresh: per-second bit	10^{-9}	10 5	10^{-3}
flip probability			
Memory power saved	17%	22%	24%
SRAM read upset probability	$10^{-16.7}$	$10^{-7.4}$	10^{-3}
SRAM write failure probability	$10^{-5.59}$	$10^{-4.94}$	10^{-3}
Supply power saved	70%	80%	90%*
	1.0		15.1
float mantissa bits	16	8	4
double mantissa bits	32	16	8
Energy saved per operation	32%	78%	85%*
Arithmetic timing error probability	10^{-6}	10^{-4}	10^{-2}
Energy saved per operation	12%*	22%	30%

Table 2. Approximation strategies simulated in our evaluation. Numbers marked with * are educated guesses by the authors; the others are taken from the sources described in Section 4.2. Note that all values for the Medium level are taken from the literature.

¹"EnerJ", A. Sampson et al., PLDI '11

Aloe Reliability Analysis

Aloe's analysis is based on that of Rely¹

$$\{0.999 \ \mathcal{R}(x,y) \ge 0.99\} \longleftarrow \begin{array}{l} \text{Reliability} \\ \text{Precondition} \end{array}$$

$$\{z = x*y \ [0.999] \ \text{rnd()};$$

$$\{\mathcal{R}(z) \ge 0.99\} \longleftarrow \begin{array}{l} \text{Reliability} \\ \text{Postcondition} \end{array}$$

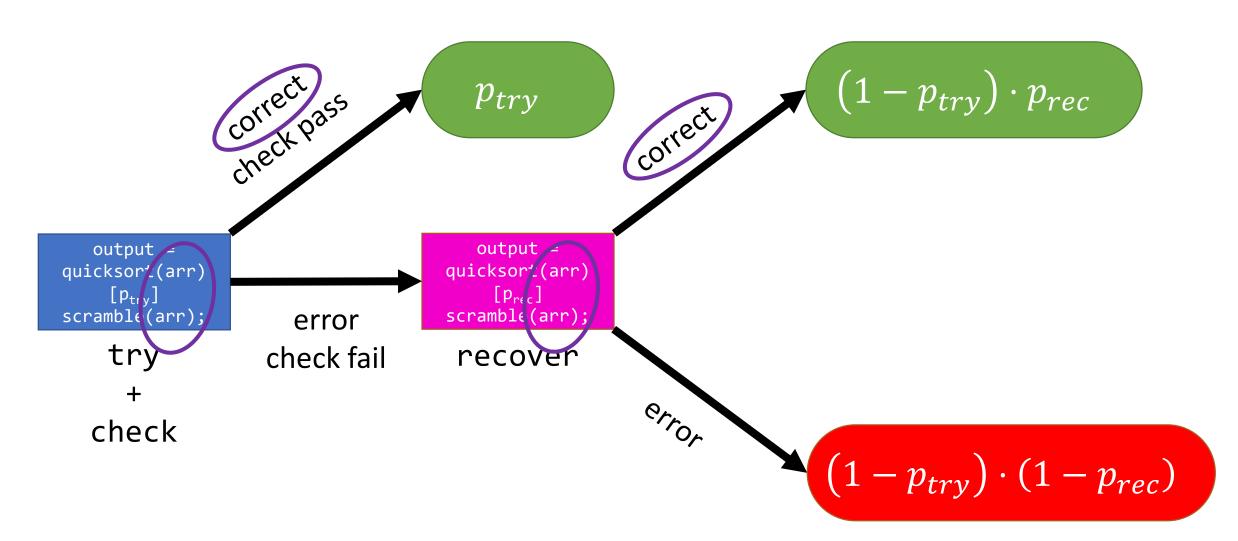
¹M. Carbin, S. Misailovic, and M. Rinard, OOPSLA '13

Example – Sorting on Unreliable Hardware

```
try {
  output = quicksort(arr) [p<sub>trv</sub>] scramble(arr);
check { sorted(output) }
recover {
  output = quicksort(arr) [p_{rec}] scramble(arr);
```

We want output to be correctly sorted with probability $\geq r$

Possible Execution Paths



Aloe Precondition Generation

```
try {
  output = quicksort(arr) [p<sub>trv</sub>] scramble(arr);
check { sorted(output) }
recover {
  \{\mathcal{R}(\mathsf{output}) \geq r\}
                           \{\mathcal{R}(\mathsf{output}) \geq r\}
```

Detour — Error-Free Rate of try

```
try {  \{0.99 \cdot \mathcal{R}(w,y) \geq r\}   x = y*2 \ [0.99] \ rnd();   z = w+y \ [0.99] \ rnd();   \{\mathcal{R}(z) \geq r\}  } check { f(w,x,y,z) }
```

check detects errors in any part of try

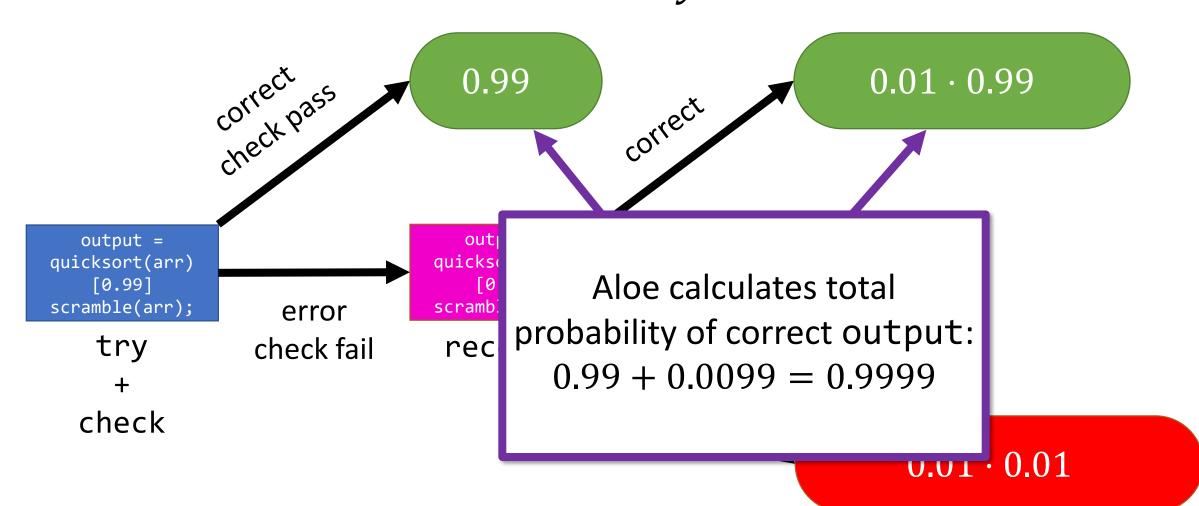
Unreliable computation of x affects the probability that check passes!

Aloe separately analyses the probability that try executes correctly in its entirety

Aloe Precondition Generation

```
\{(p_{try} + (1 - p_{try}) \cdot p_{rec}) | \mathcal{R}(arr) \ge r\}
try {
   output = quicksort(arr) [p<sub>trv</sub>] scramble(arr);
                                                                            Error-free rate of try:
check { sorted(output) }
recover {
                                      \{p_{rec}\}\mathcal{R}(\mathsf{arr}) \geq r\}
   output = quicksort(arr) [prec] scramble(arr);
                                       \{\mathcal{R}(\mathsf{output}) \geq r\}
                                       \{\mathcal{R}(\mathsf{output}) \geq r\}
```

Possible Execution Paths ($p_{try} = p_{rec} = 0.99$)



Combining Preconditions

```
recover {
                                         \{0.99 \cdot \mathcal{R}(w,y,z) \ge r\}

\{y\} \ge r \quad \land \quad (0.999) \cdot \mathcal{R}(y,z) \ge r\}
                      \{0.99\}\cdot\mathcal{R}(w,y)\geq r
    if (*) {
        x = y*w [0.99] rnd();
    } else {
        x = y+z [0.999] rnd();
                                                  \{\mathcal{R}(\mathsf{x}) \geq r\}
```

Complex Postconditions

```
\{0.9999 \cdot p_1 \cdot \mathcal{R}(\mathsf{y,z}) \geq r_1
                                                              (p_2 \cdot \mathcal{R}(y) \ge r_2)
try {
   x = y*z [0.99] rhd();
check \{f(x,y,z)\}
recover {
   x = y*z [0.99] rnd();
                                                      p_2 \cdot \mathcal{R}(y) \ge r_2
                      \{p_1 \cdot \mathcal{R}(\mathsf{x}) \geq r_1\}
```

Aloe Assumptions – Re-execution

Aloe expects that recover re-executes the code in try

The reliability of statements in try and recover may differ

Why? Impossible to prove using Rely's logic that try and recover perform the same computation

If such a proof is already available, then Aloe's analysis remains valid even for syntactically distinct try and recover

Aloe Assumptions – Idempotence

Aloe expects that the computation in try is idempotent

Idempotent – can be run multiple times without changing the correct result

E.g.
$$X=y+z$$
 \checkmark $X=X+z$

Why? Otherwise try can modify the result of executing recover

Handling Control Flow – Same as in Rely

```
RP_{\psi}(\mathsf{if}_{\ell}\ \ell\ s_1\ s_2, Q) = RP_{\psi}(s_1, Q) \land RP_{\psi}(s_2, Q)
```

```
\begin{array}{lcl} \textit{RP}_{\psi}(\texttt{while}_{\ell} \ b : 0 \ s, Q) & = & Q \\ \textit{RP}_{\psi}(\texttt{while}_{\ell} \ b : n \ s, Q) & = & \textit{RP}_{\psi}(\mathcal{T}(\texttt{if}_{\ell_n} \ b \ \{s \ ; \ \texttt{while}_{\ell} \ b : (n-1) \ s\} \ \texttt{skip}), Q) \end{array}
```

Rely Precondition Generation for Control Flow

Prior analyses (Rely) expressed recovery mechanisms using if-then statements

```
output = quicksort(list) [p<sub>try</sub>] scramble(list);
if ( ! sorted(output) )
{
  output = quicksort(list) [p<sub>rec</sub>] scramble(list);
}
```

Rely treats if-then as a nondeterministic choice

```
Case 1:
output = quicksort(list) [p<sub>try</sub>] scramble(list);

Case 2:
output = quicksort(list) [p<sub>try</sub>] scramble(list);
output = quicksort(list) [p<sub>rec</sub>] scramble(list);
```

Rely analyses the reliability of each case separately

```
Case 1: output sorted correctly with probability p_{try} output = quicksort(list) (p_{try}) scramble(list);
```

Case 2: output sorted correctly with probability p_{rec}

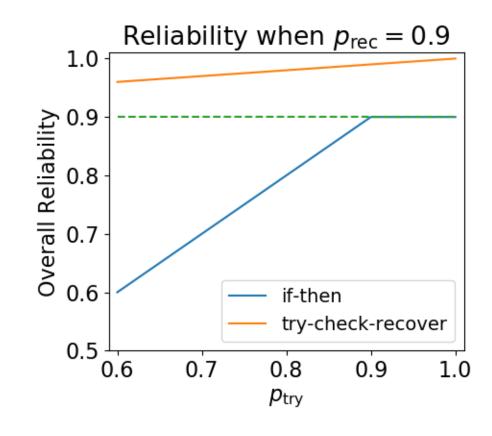
```
output = quicksort(list) [p<sub>try</sub>] scramble(list);
output = quicksort(list) [p<sub>rec</sub>] scramble(list);
```

Rely then retains the most conservative case

Overall reliability: $min(p_{try}, p_{rec})$

Compare to Aloe's calculated reliability using try-check-recover:

$$p_{try} + (1 - p_{try}) \cdot p_{rec}$$



Imperfect Checkers

Many checkers are imperfect – may not precisely detect errors

Code re-execution and comparison

- "SWIFT", G. Reis et al., CGO '05
- "Shoestring", S. Feng et al., ASPLOS '10

Error Prediction

• "Rumba", D. Khudia et al., ISCA '15

Anomaly detection

• "Topaz", S. Achour and M. Rinard, OOPSLA '15

May detect nonexistent errors

May not detect actual errors, may detect nonexistent errors

Probabilities False Positives / False Negatives Provided to Aloe True -check Pass Negative check *Check Fail executes False NO Error **Positive** try executes False -check Pass Negative check *Check Fail* executes True **Positive**

False Positive / False Negative Rates

For some checkers, these rates can be determined analytically

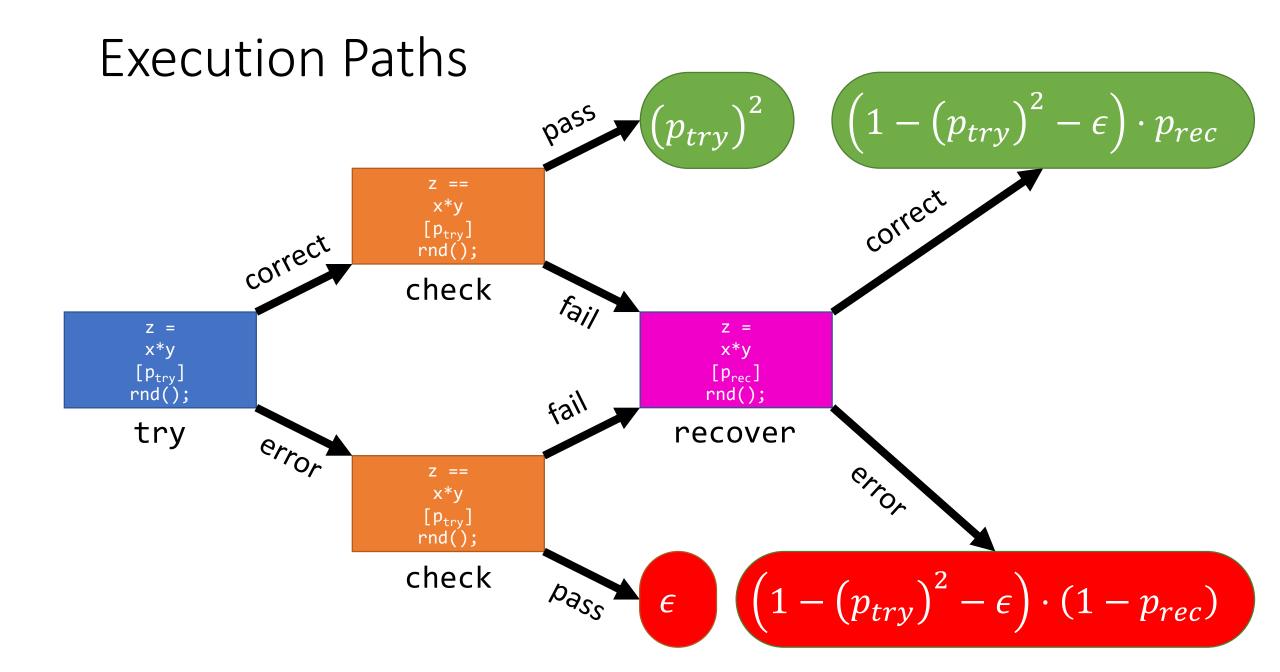
• E.g. approximate sorted-ness checks provide statistical guarantees

For other checkers, these rates must be determined empirically

- E.g. outlier detection¹, DNNs² which require pre-training
- Probabilities of false positives/negatives are estimated from training/testing data
- Aloe's analysis is only valid for similar distribution of input data

Example – Unreliable Multiplier Hardware

```
try {
                                  try multiplies x and y in an
                                   unreliable manner
  z = x*y [p_{try}] rnd();
check {
                                   check re-executes the
                                  computation on same hardware
  z == (x*y [p_{trv}] rnd());
recover {
                                   We want z to be exact with
                                   probability \geq r
  z = x*y [p_{rec}] rnd();
```



Aloe Precondition Generation

Error-free rate of try: p_{try}

```
\left\{ \left( \left( p_{try} \right)^2 + \left( 1 - \left( p_{try} \right)^2 - \epsilon \right) \cdot p_{rec} \right) \cdot \mathcal{R}(\mathbf{x}, \mathbf{y}) \ge r \right\}
try {
                                                                                           True Negative:
   z = x*y [p_{try}] rnd();
                                                                                           False Positive:
check { z == (x*y [p_{trv}] rnd()); }
                                                                                                  1 - p_{try}
recover {
                                                                                           False Negative:
                                            \{p_{rec} \cdot \mathcal{R}(x, y) \geq r\}
                                                                                                  \epsilon \ (\approx 0)
    z = x*y [p_{rec}] rnd();
                                                                                           True Positive:
                                                   \{\mathcal{R}(\mathsf{z}) \geq r\}
```

Benchmarks

try-check-recover

Benchmark	End-to-End Computation	Kernel Computation
PageRank	PageRanks of graph nodes	Update PageRank of one node
Scale	Upscale an image	One pixel of upscaled image
Blackscholes	Prices of stock options	Price of one stock option
SSSP	Single Source Shortest Path	One iteration for one node
BFS	Breadth First Search	One search iteration for one node
SOR	Successive Over-Relaxation	One update for one element
Motion	Motion estimation	Similarity calculation for one block
Sobel	Edge detection filter	One pixel of filtered image

Methodology

We model an architecture having multiple available reliability levels¹

Reliability of arithmetic operations:

 $try - 0.999^{1}$

recover - 0.9999 1

¹"EnerJ", A. Sampson et al., PLDI '11

Methodology

Perfect checkers: we simulate hardware support for detecting errors^{1,2}

Imperfect checkers: we experiment with different false positive/negative rates from Topaz³

We compare Aloe's analysis results to Rely

Rely uses if-then instead of try-check-recover

Reliability Calculated by Aloe (Perfect Checker)

	Kernel-level Reliability		End-to-End Reliability		
Benchmark	Aloe	Rely	Aloe	Rely	Aloe Time
PageRank	0.9999	0.9531	≥ 0.99	≈ 0.00	23.33s
Scale	0.9999	0.9891	≥ 0.99	≈ 0.00	10.48s
Blackscholes	0.9999	0.9871	≥ 0.99	≈ 0.00	6.51s
SSSP	0.999999	0.9920	≥ 0.99	≈ 0.00	18.60s
BFS	0.99999	0.9227	≥ 0.99	≈ 0.00	15.22s
SOR	0.99999	0.9950	≥ 0.99	≈ 0.00	21.02s
Motion	0.9999	≈ 0.00	≥ 0.99	≈ 0.00	4.42s
Sobel	0.9999	0.9930	≥ 0.99	≈ 0.00	2.10s

More in the Paper

error-free rate analysis of try

Several additional examples

- Additional evaluation details
 - Testing setup
 - Unreliable checker and empirical analysis results
- [Appendix] Semantics and Aloe soundness proof

Conclusion

Aloe is the first static analysis of reliability of programs with recovery mechanisms

We analyzed eight kernels and end-to-end benchmarks with recovery mechanisms

Aloe can verify useful reliability bounds for all benchmarks