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APPENDIX A
CROP-MONITOR: REAL-WORLD ERROR DISTRIBUTION AND

PERCEPTION MODEL COMPARISON

Figure 1 shows the error distribution of the ResNet-18
networks used by the Crop-Monitor vehicle [1] on the orig-
inal validation dataset of real-world images collected by the
vehicle’s camera in a cornfield. The left and right plots are for
the heading and distance perception error, respectively. The
histogram shows the actual error frequency, while the line
shows the fitted normal distribution. The distribution closely
matches the histogram, indicating that the error of the neural
network is normally distributed.

Figure 2 visually compares the neural network output dis-
tribution to the distribution predicted by Mper for images
captured within Gazebo. The red dashed ellipse and the blue
solid ellipse show the 3σ confidence boundaries for the neural
network output distribution and the distribution predicted
by the perception model, respectively. The two distributions
closely match each other, especially when the vehicle is near
the center and pointing straight ahead.

APPENDIX B
CROP-MONITOR: SENSITIVITY INDEX CONVERGENCE

VISUALIZATION

Figure 3 shows an example visual comparison of sensitivity
indices calculated by GAS and MCS for the sensitivity of the
change in state between time step 0 and 1 to the initial state in
time step 0 for Crop-Monitor. The input variables include the
heading and distance at time step 0, and the two components of
the raw sample that is transformed into the perception neural
network output distribution sample. The output variables are
the heading and distance at time step 1. There is one sensitivity
index corresponding to each input/output variable pair. The
blue solid line shows the sensitivity calculated analytically
by GAS, the blue dotted line shows the sensitivity calculated
empirically using the GAS model, and the red dashed line
shows the sensitivity calculated empirically using M ′

V . In each
subplot, the X-Axis shows the number of samples used for
empirical estimation, while the Y-Axis shows the calculated
sensitivity index. As the number of estimation samples is
increased, the sensitivity indices calculated via estimation
converge towards those calculated analytically. About 106

samples are needed for convergence.

APPENDIX C
ALTERNATIVE APPROACHES FOR CONSTRUCTING THE

SURROGATE MODEL

A. Alternative approaches using GPC

The GPC model construction process evaluates the ab-
stracted vehicle model at specific quadrature nodes. Instead
of constructing a perception model, we attempted to directly
calculate and use the actual perception neural network output
distributions at these quadrature nodes. However, if the quadra-
ture nodes change (e.g., by changing the state distribution
or order of GPC), then new images must be captured and
processed for the new quadrature nodes. In contrast, the
perception model can be directly reused as it is agnostic to
the quadrature nodes.

We also experimented with replacing only parts of M ′
V

with GPC as follows: first, we replaced the perception system
with the perception model to create M ′

V . Then, instead of
replacing all of M ′

V with a GPC model, we replaced only
the vehicle control and dynamics systems (as the perception
system had already been replaced by a polynomial model
Mper ). While the accuracy of this approach was the same
as our main approach, the partially replaced model was about
3× slower than the fully replaced model during evaluation for
all benchmarks.

B. Alternative types of surrogate models

While we focus on GPC surrogate models, GAS also
enables the use of other surrogate models by replacing the
complex perception system with a perception model. That is,
we can train a different type of surrogate model instead of a
GPC model. We can then use the alternative surrogate model
for state distribution estimation or for sensitivity analysis. We
next briefly describe our results for two alternative surrogate
models: polynomial regression and neural networks.

We experimented with using standard polynomial regression
for creating the surrogate model (as opposed to generating
polynomial surrogates via GPC). For training and testing data,
we chose points in the safe state space using a Sobol sequence.
Column 3 of Table I shows the t-test results for the regression
surrogate model. For most benchmarks, the accuracy of the
regression surrogate model is slightly lower than that of
the GPC surrogate model (Column 2). This is in line with
the fact that GPC produces the most optimal polynomial
surrogate model for any order ([2][Equation 5.9]) in terms of



Fig. 1: Error distribution of the neural network for the validation set of real-world images.

TABLE I: t-test results among surrogate model candidates

Benchmark GPC Poly Reg DNN

Crop-Monitor 99/100 100/100 (52± 40)/100
Cart-Straight 97/100 97/100 (49± 39)/100
Cart-Curved 98/100 97/100 (46± 35)/100
ACAS-Table 100/100 99/100 (46± 01)/100
ACAS-NN 100/100 98/100 (46± 04)/100

ℓ2 error. Further increasing the order of the polynomial does
not increase accuracy, but rather causes overfitting. The other
safe state probability similarity metrics show similar trends.

We also experimented with using a neural network surrogate
model. Once again, we chose points in the safe state space
using a Sobol sequence to generate training/testing data. We
experimented with various neural network topologies and
activations, with the number of parameters being at least the

number used by the GPC model. We found that the accuracy
of this surrogate model varied widely with the initial seed.
Column 4 of Table I shows the t-test results for the NN
surrogate model. Due to the dependence on the initial seed, the
results are presented in the form (mean ± std). The standard
deviation is high for the first three benchmarks, and the mean is
low for all benchmarks. Without the original vehicle model for
comparison, it would not be possible to know which random
restart produced the most accurate model. In contrast, GPC
deterministically produces an optimal polynomial model.
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Fig. 2: Comparison of neural network output distribution (dashed red ellipse) to distribution predicted by perception model
(solid blue ellipse). Each box represents a distinct ground truth state used to construct the perception model. The X and Y-Axes
vary the ground truth heading and distance, respectively.

Fig. 3: Calculated sensitivity index comparison. Blue solid: GAS (analytical method), blue dotted: GAS (empirical method),
red dashed: MCS.


	Appendix A: Crop-Monitor: real-world error distribution and perception model comparison
	Appendix B: Crop-Monitor: sensitivity index convergence visualization
	Appendix C: Alternative approaches for constructing the surrogate model
	Alternative approaches using GPC
	Alternative types of surrogate models


