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Abstract—Modern autonomous vehicle systems (AVS) use com-
plex perception and control components. Developers gradually
change these components over the vehicle’s lifecycle, requiring
frequent regression testing. Unfortunately, high-fidelity simula-
tions of these complex AVS for evaluating safety are costly, and
their complexity hinders the development of precise but less
computationally intensive surrogate models.

We present GAS, a novel approach for expediting simulation-
based safety testing of AVS with complex perception and control
components. GAS creates a surrogate of the complete vehicle
model (i.e., those with complex perception, control, and dynamics
components). The surrogates execute faster than the original
models and are used to precisely estimate two key properties:
the probability that the AVS will violate safety assertions and
the bounds on global sensitivity indices of the AVS.

We evaluate GAS on five scenarios involving crop management
vehicles, self driving carts, and unmanned aircraft. Each AVS
in these scenarios contains a complex perception or control
component. We generate surrogates of these vehicles using GAS
and check the accuracy of the above properties. Compared
to the original simulation, GAS models enable estimating the
probability of violating a safety assertion 3.7 times faster on
average and analyzing sensitivity 1.4 times faster on average.

I. INTRODUCTION

Autonomous vehicle systems (AVS) are becoming increas-
ingly common. Besides self-driving cars, many autonomous
vehicles perform specialized tasks (e.g., plant and animal
monitors, self-driving carts in factories, and drones and other
unmanned aircraft), drastically increasing the diversity of
designs and applications. Yet, they all navigate by perceiving
the vehicle’s state (position, heading, etc.), making a control
decision based on this perceived state, and moving according
to the rules of physics. To ensure safety, developers specify
properties that the vehicle must satisfy in certain scenar-
ios (e.g., the vehicle stays on the assigned path). However,
1) many sensors have a nondeterministic output (e.g., GPS
and LIDAR) and 2) the vehicle’s software processes sensor
values or makes decisions using complex, possibly imperfect
components such as neural networks (NNs) and lookup tables.
Given the uncertainty in the output of the perception and
control systems, developers focus on showing that the vehicles
will satisfy the safety properties with high probability.

Simulation-based testing of safety properties during de-
velopment of AVS can detect software faults that would
otherwise require much more expensive real-world tests [2,
15, 34, 38, 39] and are commonly used in industry for
testing AVS [2]. Monte Carlo Simulation (MCS) is the most
commonly used method for providing statistical guarantees

when checking AVS safety properties. However, using MCS
can be prohibitively expensive, especially for developers of
specialized utility vehicles, who may not have the resources
available to major members of the automotive industry. The
presence of uncertainty in inputs necessitates a large number
of resource-intensive system simulations to get sufficiently
accurate estimates of the probability that the vehicle will
violate safety properties [2, 29, 33]. This makes the use of
MCS in regression test suites for vehicle systems impractical
except in limited scenarios.

In many engineerings systems, surrogate models aim to
provide an accurate and faster replacement for the original
costly models [3]. Such surrogate models help developers
configure and test the system in many ways: 1) checking
application-specific assertions (e.g., whether a vehicle follows
the path), 2) checking the robustness of the system to changes
in the environment (e.g., weather changes, sensor noise levels),
and 3) serving as an anomaly detector during fault injection
studies in the original model/simulator.

A key concern when developing surrogate models for these
tasks is that the surrogate should be a close representative of
the simulated model w.r.t. the properties of interest. However,
complex perception and control components – which dominate
the vehicle model simulation time – hinder the application
of existing surrogate model construction techniques (e.g., [26,
29]) to creating surrogate models of a complete vehicle system,
which in the context of this paper is the system with complex
perception, control, and dynamics components.

Our work. We present GAS (GPC for Autonomous Vehicle
Systems), the first approach for creating surrogate models of
complete AVSs with complex perception and/or control com-
ponents. The resulting surrogate models closely approximate
the original vehicle models while being significantly faster,
thus significantly reducing simulation cost when developers
experiment with AVS components or tune system parameters.

GAS first creates a perception model to calculate the
distribution of error in the output of the perception system
for any ground truth state. GAS directly samples this error
distribution, minimizing the need for costly experimentation
with environmental parameters, image generation, and neural
networks. Second, GAS constructs a surrogate model of the
complete vehicle system (perception, control, and dynamics).
In this paper, we primarily create surrogate models using
Generalized Polynomial Chaos (GPC) [40] as this approach



Fig. 1: Real-life TerraSentia crop
monitoring vehicle [9].

Fig. 2: Crop-Monitor vehicle: original model MV (top) and abstract model M ′
V (bottom).

GAS replaces the outlined section with a surrogate model MGPC .

produced the best results in our evaluation; GAS also supports
other types of surrogate models (e.g., polynomial regression
or small NNs). Because GAS’s perception model is created
independently of downstream components, GAS can reuse it
when developers alter vehicle control and dynamics properties,
saving significant time.

We demonstrate the advantages of using the GAS-generated
surrogate model for estimating two key statistics of utility
vehicle systems. First, we estimate the probability that the
vehicle will violate a safety property over time in five real-
istic scenarios. These scenarios model systems used in crop
management vehicles, self driving utility carts, and unmanned
aircraft, with associated safety properties. Each system uses
a complex perception component (ResNet-18 or LaneNet)
or a complex control component (neural network controllers
or lookup tables). We show that the probability of violating
a safety property calculated by the surrogate model closely
matches that calculated via the original model for 97% or
more of time steps, while being 3.7× faster on average
(minimum 2.1×). Second, we use the surrogate model for
global sensitivity analysis of the vehicle system to initial state
perturbations for the same scenarios by calculating Sobol sen-
sitivity indices [36] 1.4× faster on average (minimum 1.3×)
with an average error of 0.0004 (maximum 0.06). Lastly, we
also investigate how various hyperparameters of the perception
model affect the overall accuracy and speedup of GAS.

Contributions. This paper makes several contributions:

• Surrogate models for complex autonomous vehicle sys-
tems. We present GAS, a novel approach for creating fast,
accurate surrogate models of complete autonomous vehicle
systems with complex perception and control.

• Perception models. We present models that estimate the
error distribution of complex perception systems, and use
these perception models as part of our GAS approach.

• Implementation. We implement GAS as a tool which
automates the creation of the perception model and the
creation and usage of the surrogate model. GAS is available
at https://github.com/uiuc-arc/GAS.

• Evaluation. We evaluate GAS on five realistic scenarios that
model specialized autonomous agricultural vehicles, utility
vehicles, and unmanned aircraft. GAS provides fast and
accurate estimates of the probability that the AVS reaches an
unsafe state and the global sensitivity indices of the AVS.

II. OVERVIEW

Consider an autonomous vehicle that travels between rows
of crops to inspect them. We have adapted this scenario from
the Terrasentia robot [9, 35]. Figures 1-2 illustrate the scenario.

The top half of Figure 2 shows a block diagram represen-
tation of the system model MV responsible for driving the
vehicle between two rows of crops. First, a camera captures the
area in front of the vehicle. The image depends on the current
vehicle state as well as environmental variables such as crop
type, crop growth stage, and lighting conditions. A regression
neural network (NN) analyzes the image to perceive the cur-
rent vehicle state. The relevant state variables in this scenario
are: 1) the heading angle h, which is the angle between the
vehicle’s current heading and the imaginary centerline between
the two rows of crops, and 2) the distance d of the vehicle
from the centerline. h can take values in [−π, π] radians while
d can take values in [−0.38, 0.38] meters. The vehicle state
space is therefore DS = [−π, π]h×[−0.38, 0.38]d. As NNs are
inherently approximate, this perceived state may not match the
ground truth. The control system uses this perceived state to
calculate a steering angle. Finally, the vehicle moves according
to its constant speed and commanded steering angle.
Safety property. We wish to avoid two undesirable outcomes:
1) if |d| > 0.228m, the vehicle will hit the crops, and 2) if
|h| > π/6, the NN output will become highly inaccurate. Since
the vehicle makes control decisions based on approximate
data, we cannot be certain that it will remain within the safe
state space Dsafe

S = [−π/6, π/6]h × [−0.228, 0.228]d. Instead,
we want to answer the question: What is the probability that
the vehicle will remain safe over a period of time? Moreover,
we want to ensure that the proposed changes to the vehicle
system do not lead to a sudden increase in the probability of
reaching an unsafe state.
Monte Carlo Simulation. In Monte Carlo Simulation (MCS),
we simulate the vehicle’s movement a large number of times
and count the number of times the vehicle violates a safety
properties. We use Gazebo [23] for precise control over the
simulation environment. We simulate 1,000 sample vehicles
over 100 time steps of 0.1 seconds each. We randomly sample
environmental conditions from an environment distribution
DE that contains two crop types, four crop growth stages, and
various lighting conditions. We also choose the initial vehicle
state from a normal distribution. At each time step, we count

https://github.com/uiuc-arc/GAS


Fig. 3: State distribution at the final time step: heading
(left) and distance from the centerline (right)

Fig. 4: Wasserstein metric (distri-
bution similarity) over time

Fig. 5: Probability of stay-
ing in a safe state over time

how many samples are still in a safe state.
While such simulation is faster and cheaper than real-life

tests and can still find issues in the vehicle system [2, 15, 34,
38, 39], it is still expensive enough that testing every proposed
change to the system in this manner would be impractical.

A. GAS: using Generalized Polynomial Chaos

We present GAS, a novel approach for creating fast sur-
rogate models of complex vehicle systems. Here, we show
an example construction using Generalized Polynomial Chaos
(GPC). Using GPC to create surrogate models of vehicle
dynamics only as in previous work [22] is insufficient as
image capture and processing contributes to over 99% of the
simulation time. Instead, GAS creates a surrogate for the entire
vehicle model – perception, control, and dynamics.
Perception model construction. The output of the vehicle’s
perception NN depends on the image captured by the front
camera. This image depends not only on the vehicle’s state,
but also environmental variables. For a given distribution
of environmental variables, there is a corresponding output
distribution of the perception NN for each ground truth state.
Based on real-world data from [44], we found that this NN
output distribution is approximately Gaussian [1, Section A].

GAS must sample this output distribution when creating
the GPC model. However, directly using the numerous en-
vironmental variables increases the input space over which
GAS must construct the GPC model, which increases model
construction time. GAS instead abstracts away the actual
environmental variables by creating a perception model. The
perception model does not have to be a perfect abstraction
of the NN (creating such an abstraction is at least as hard as
verifying the NN). Instead, GAS trains the perception model
by selecting an 11× 11 grid G of ground truth states in Dsafe

S .
At each grid point g ≡ (h, d), it randomly samples images
from DE , and records the NN’s outputs. It calculates the mean
µ(g) and covariance σ2(g) of the outputs at each grid point.
GAS trains a polynomial regression model Mper to predict
each component of µ(g) and σ2(g), thus encoding the NN’s
output distribution at every state.
GPC Surrogate model construction. Next, GAS creates
an abstract vehicle model M ′

V (bottom half of Figure 2).
M ′

V first uses the perception model to obtain the NN output

distribution in the current state. It next transforms a sample
from a 2D standard normal distribution into a sample from
this output distribution by multiplying by σ and adding µ.
The rest of the vehicle model uses this transformed sample as
the perceived state. GAS now uses GPC to create a 4th degree
polynomial model of all of M ′

V (outlined section of Figure 2).
GAS replaces the original model MV in the MCS procedure
described above with this surrogate model MGPC to estimate
the safe state probability of the vehicle over time. Because
MGPC is much faster to simulate than MV , we also increase
the number of samples for safe state probability estimation to
10,000 in order to reduce sampling error.

B. GAS results for crop monitoring vehicle

Accuracy. Figure 3 compares the heading and distance distri-
butions after 100 time steps. The X Axis shows the variable
value and the Y Axis shows the cumulative probability.
The red dashed and blue solid plots show the distributions
estimated using MV and MGPC , respectively. We compare
the two distributions using the Kolmogorov-Smirnov (KS)
statistic and the Wasserstein metric. Figure 4 shows how the
Wasserstein metric (Y Axis) evolves over time steps (X Axis).
The low Wasserstein metric value indicates good correlation
between the two distributions at all times. The KS statistic
also remains below 0.14. Figure 5 shows the probability
of remaining in a safe state, i.e., not violating the safety
property (Y Axis) over time steps (X Axis). The shaded
regions around each plot show the 95% bootstrap confidence
interval, which illustrates the extent of sampling error. As
GAS evaluates MGPC for 10× more samples than MV , its
confidence interval is smaller. We use the t-test to check if the
safe state probabilities are similar: it passes for 99 of 100 time
steps, indicating high similarity.
Time. MCS using MV required 19.5 hours on our hardware.
To create the surrogate MGPC , we first had to create Mper .
Gathering the training data for Mper required 8.5 hours. The
time required for training Mper , constructing MGPC , and
using MGPC was negligible in comparison (< 1 minute).
Overall, this means that GAS is 2.3× faster than MCS
using MV . Increasing the number of samples or time steps
would further increase this speedup, since the time required
to construct Mper is a one-time cost.



Incremental analysis and regression testing. When devel-
opers make changes to the vehicle control and dynamics
systems, GAS can reuse Mper . Because gathering training
data for Mper constitutes over 99% of GAS’s analysis time,
this reusability saves a significant amount of time when
testing changes to these subsystems. GAS must create a new
perception model if developers make changes to the percep-
tion system, but the results above show that creating a new
perception model is still cheaper than using MV . Crucially,
if a change to the vehicle causes a sudden increase in the
probability of violating a safety property, this increase will
also be reflected in the results of the GAS surrogate model,
thus providing developers with an approach for accelerating
regressing testing of vehicle systems.

III. BACKGROUND: GENERALIZED POLYNOMIAL CHAOS

We present key definitions pertaining to GPC. Dedicated
books (e.g., [40]), discuss GPC in more details.
Orthogonal polynomials. Assume X is a continuous variable
with support SX and probability density pX : SX → R. Let
Ψ = {Ψn|n ∈ N} be a set of polynomials, where Ψn is an nth

degree polynomial. Then Ψ is a set of orthogonal polynomials
w.r.t. X if for all n ̸= m,

∫
SX

Ψn(x)Ψm(x)pX(x)dx = 0.
The orthogonal polynomial Ψn has n distinct roots in SX .
Orthogonal polynomials exist for several probability distri-
butions. For example, the Legendre, Hermite, and Laguerre
polynomials are orthogonal for the uniform, normal, and
gamma distributions respectively.
Orthogonal polynomial projection (GPC). Let f : SX → R.
Then the N th order orthogonal polynomial projection of f ,
written as fN , w.r.t. a set of orthogonal polynomials Ψ, is:

fN =

N∑
i=0

ciΨi where ci =

∫
SX

f(x)Ψi(x)pX(x)dx∫
SX

Ψ2
i (x)pX(x)dx

(1)

If f is an N th degree polynomial, then fN = f . Otherwise,
fN is the optimal N th degree polynomial approximation of
f w.r.t. X , in the sense that it minimizes ℓ2 error, which is
calculated as

∫
SX

(f(x)− fN (x))2pX(x)dx. As N → ∞, the
ℓ2 error approaches 0, that is, we can construct arbitrarily good
approximations of f . fN is called the N th-order generalized
polynomial chaos (GPC) approximation of f .
Lagrange basis polynomials. Given N points (xi, yi), 1 ≤
i ≤ N , where all xi are distinct, Equation 2 shows the
Lagrange basis polynomials Li for each i.

Li(x) =
∏

1≤j≤N
j ̸=i

x− xj

xi − xj
(2)

Gaussian quadrature. To use Equation 1, we must per-
form multiple integrations to calculate the coefficients ci
(i ∈ {0 . . . N}). For any non-trivial function g, we must use
numerical integration by approximating the integral with the
following sum:∫
SX

g(x)pX(x)dx ≈
N∑
i=1

wig(xi); wi =

∫
SX

Li(x)pX(x)dx (3)

We choose wi and xi so as to minimize integration error.
In Gaussian quadrature, we choose xi to be the N roots
of ΨN , the N th order orthogonal polynomial w.r.t. X . We
calculate the corresponding weights wi using the Lagrange
basis polynomials Li (Equation 2) passing through xj ∀j ̸= i.
Multivariate GPC. GPC can be easily extended to the
multivariate case if all input variables are independent. Let
X = (X1, . . . , Xd) be the d independent random variables
(not necessarily following the same distribution) and let f
be a function over X. The orthogonal polynomials Ψi for
X are simply the products of the orthogonal polynomials
Ψi1 , . . . ,Ψid for X1, . . . , Xd respectively. The GPC approxi-
mation closely resembles the one for the univariate case:

fN =
∑
i

ciΨi where ci =

∫
SX

f(x)Ψi(x)pX(x)dx∫
SX

Ψi
2(x)pX(x)dx

(4)

We calculate ci using a variant of Equation 3 in which we
sum over all dimensions of i.
Global sensitivity (Sobol) indices. Sobol indices [36] de-
compose the variance of the model output over the entire
input distribution into portions that depend on subsets of the
input variables Xi. The first order sensitivity indices show the
contribution of a single input variable to the output variance.
For a variable Xi, the sensitivity index is Si = Vi/V . Here,
V = VarX(f(x)) is the total variance and

Vi = VarXi
(EX¬i

(f(x)|Xi = xi)) (5)
where X¬i = {X1, . . . , Xd} \ {Xi}

We can evaluate Equation 5 analytically when f is a polyno-
mial (such as those generated via GPC) and when it is possible
to calculate the moments of each independent component of
X analytically. For more complex functions and distributions,
we must use Monte Carlo estimators [36, Equation 6].

IV. GAS APPROACH

We present the GAS approach, which has three main steps:
1) Create a deterministic complete vehicle model.
2) Train a perception model to replace the regression NN

used for state perception (Algorithms 1-2).
3) Construct a complete vehicle surrogate (Algorithm 3).

GAS automates almost the entire process of constructing and
using the surrogate model. The user provides the environment
distribution (DE), distribution of other relevant random vari-
ables (DR), initial state distribution (D0

S), and other simulation
parameters to GAS.

A. Creating a deterministic vehicle model

First, we represent the complete vehicle model as a function
of independent random variables, MV : DS×DE×DR → DS .
S ∈ DS is a vector of state variables, E ∈ DE is a
vector of environment-related random variables that affect
the image processed by the NN (e.g., weather and lighting
conditions), and R ∈ DR is a vector of random variables that
do not affect the NN, but affect other parts of MV . Making
MV deterministic allows us to explicitly sample the output
distribution of MV for any given state. We remove any input



variable dependencies by isolating independent components of
input variables as necessary.

Algorithm 1 Training the perception model (Mper )
Input G: set of ground truth states; DE : distribution of environ-
ment variables; ni: num. images to capture for each g ∈ G
Returns Mper : perception model; dper : perception model degree

1: function TRAINPERCEPTIONMODEL(G,DE , ni)
2: TrainTestData ← { }
3: for g ∈ G do
4: Ig ← [ ]
5: for i from 1 to ni do
6: E ∼ DE

7: Img ← CAPTUREIMAGE(g,E)
8: Ig ← Ig :: Img

9: Og ← NEURALNETWORK(Ig)
10: µg ← MEAN(Og)
11: σ2

g ← COVARIANCE(Og)
12: TrainTestData ← TrainTestData[g 7→ (µg, σ

2
g)]

13: Mper , dper ← POLYREGMODEL(TrainTestData)

B. Replacing the perception system

The output of regression NNs which use camera images
to perceive the vehicle’s state is affected by environmental
factors. Given a ground truth state and environment distri-
bution, there is a corresponding output distribution of the
NN. To enable faster and deterministic sampling of this
output distribution, GAS replaces the perception system with
a perception model.

Algorithm 1 shows how GAS creates the perception model
Mper . GAS chooses a set of ground truth states G from
the set of safe states Dsafe

S (i.e., states that do not violate
safety properties). For each ground truth state g ∈ G, GAS
1) captures a list of images Ig in environments E sampled
from the environment distribution DE , 2) passes Ig through
the perception NN to obtain a list of outputs Og , and 3) cal-
culates the mean µg and covariance σ2

g of Og . GAS trains
a polynomial regression model Mper to predict the mean µS

and covariance σ2
S of the output distribution OS at any ground

truth state S ∈ Dsafe
S . GAS also infers the optimal polynomial

degree dper to maximize accuracy while preventing overfitting.

Algorithm 2 Abstracted vehicle model (M ′
V )

Input S: initial state of vehicle; N : raw sample to be transformed
into neural network output sample; R: other random variables;
Mper : trained perception model
Returns S′: state of vehicle after one time step

1: function M ′
V (S,N,R,Mper )

2: µS , σ
2
S ←Mper (S)

3: OS ← TRANSFORM(N,µS , σ
2
S)

4: S′ ← VEHICLECONTROLANDDYNAMICS(S,OS , R)

We create an abstracted vehicle model M ′
V : DS × Rn ×

DR → DS (Algorithm 2) which uses Mper instead of the NN.
For the input vehicle state S, M ′

V first calculates the perception
NN output distribution OS . Specifically, GAS assumes that
OS = N (µS , σS), where µS and σ2

S are the output distribution
parameters at S predicted using Mper . Instead of a sample
from DE , M ′

V accepts a sample N from a multivariate
standard normal distribution N (0, 1). M ′

V transforms N to a

sample from OS . M ′
V uses this sample as the perceived state

for the rest of the model consisting of the vehicle’s control
and dynamics systems.

GAS’s assumption that the perception NN output is dis-
tributed according to N (µS , σS) is based on the the output
distribution for real-world images, which has a normal dis-
tribution. However, GAS can use the same method for other
distributions if the parameters of the fitted distribution vary
smoothly as the ground truth changes.

Algorithm 3 GPC surrogate model (MGPC ) construction
Input Dsafe

S : distribution over Dsafe
S ; DR: distribution of other

random variables; ogpc : order of GPC model; M ′
V : abstracted

vehicle model
Returns MGPC : GAS surrogate model

1: function CREATEGPCMODEL(Dsafe
S ,DR, ogpc ,M

′
V )

2: J ← JOIN(Dsafe
S ,N (0, 1),DR)

3: Ψ← GENERATEORTHOGONALPOLYNOMIALS(ogpc , J)
4: X,W ← GENERATEQUADNODESWEIGHTS(ogpc , J)
5: Y ← [M ′

V (x) for x ∈ X]
6: MGPC ← QUADRATUREANDGPC(Ψ, X,W, Y )

C. GPC for the complete vehicle system
Algorithm 3 shows how GAS constructs the GPC ap-

proximation of the abstracted vehicle model M ′
V . GAS first

constructs a joint distribution J over all input variables to M ′
V

by taking the product of a distribution for each input variable.
GPC will produce a polynomial approximation that minimizes
ℓ2 error weighted by the probability distribution of J . For the
state variables, GAS chooses a normal or truncated normal
distribution Dsafe

S over the safe state space Dsafe
S . For the raw

sample that is transformed into a sample from the perception
system output distribution OS , GAS uses N (0, 1), as that
ensures that the transformed sample is indeed distributed
according to OS . For the other random variables, GAS uses
their actual distribution DR. Then, J = Dsafe

S ×N (0, 1)×DR.
Next, GAS calculates the basis polynomials Ψ which are
orthogonal w.r.t. J . To efficiently calculate the coefficients
of the polynomials in Ψ, GAS uses Gaussian quadrature for
numerical integration. The surrogate model MGPC is the
sum of the orthogonal basis polynomials multiplied by these
calculated coefficients, as per Equation 4.
Categorical state variables. Some vehicle models have cat-
egorical state variables. For example, many control systems
operate in multiple modes. The control system can switch
modes if certain conditions are met, and the current mode
affects the control decisions. In this case, the current mode is
a categorical state variable. Unlike categorical variables, poly-
nomial inputs and outputs are continuous intervals. Therefore,
we cannot use GPC for predicting categorical variables, or
accept a categorical variable as an input to the GPC model.
One option is to create a different type of surrogate model for
such vehicle models. However, GAS can still enable the use of
GPC by using multiple GPC sub-models and using a separate
classifier for predicting categorical variables. This procedure
is known as multi-element GPC (ME-GPC).

Suppose a vehicle model’s state includes a categorical
variable X with the domain DX = {x1, . . . , xk}. GAS uses



GPC to create a separate surrogate model for each xi ∈ DX .
The compound surrogate model chooses which of these sub-
models to use based on the value of X . In this way, GAS
calculates all output state variables except X . For predicting
X , GAS creates an ancillary classifier. GAS trains the ancillary
classifier in the same manner as the perception model in
Algorithm 1, with the main distinction being that it creates
a classification model as opposed to a regression model.

Algorithm 4 Estimating the safe state probability over time
Input ns: number of samples to use for distribution estimation;
T : number of time steps; D0

S : initial state distribution; DR:
distribution of other random variables; Pred : safety predicate;
MGPC : constructed GAS surrogate model
Returns Psafe : probability that the vehicle remains in a safe state
until each time step

1: function ESTIMATESAFEPROB(ns, T,D0
S ,DR,Pred ,MGPC )

2: X ← [ ]; Psafe ← { }
3: for i from 1 to ns do
4: x ∼ JOIN(D0

S ,N (0, 1),DR)
5: X ← X :: x
6: for t from 1 to T do
7: X ′ ← [ ]
8: for x ∈ X do
9: S′ ←MGPC (x)

10: if SAFE(S′,Pred) then
11: N ′ ∼ N (0, 1)
12: R′ ∼ DR

13: X ′ ← X ′ :: (S′, N ′, R′)

14: X ← X ′

15: Psafe ← Psafe [t 7→ |X|/ns]

D. Applications of the GAS surrogate model

Calculating the probability of remaining in a safe state
over time. GAS uses the surrogate model to estimate the
probability that the vehicle will remain in a safe state over time
(Algorithm 4). GAS creates initial state samples S from the
initial state distribution D0

S . At each time step, GAS chooses
random samples N and R from N (0, 1) and DR respectively.
GAS evaluates the surrogate model on each joint sample to get
the next state. Finally, GAS calculates the fraction of samples
that always remained in the safe region.

Algorithm 5 Using estimators to calculate sensitivity indices
Input ns: number of samples to use for sensitivity estimation;
i: index of state variable to calculate sensitivity for; DS : current
state distribution; DR: distribution of other random variables; M :
model (MGPC or M ′

V )
Returns Si: sensitivity index of selected state variable

1: function ESTIMATESENSITIVITY(ns, i,DS ,DR,M )
2: Y0 ← [ ]; Y1 ← [ ]
3: for i from 1 to ns do
4: x0, x1 ∼ JOIN(DS ,N (0, 1),DR)
5: y0 ←M(x0); y1 ←M(x1[i 7→ x0[i]])
6: Y0 ← Y0 :: y0; Y1 ← Y1 :: y1
7: Si ← (MEAN(Y0 ∗ Y1)−MEAN(Y0)

2)/VAR(Y0)

Computing Sobol indices. GAS uses MGPC to calculate
Sobol sensitivity indices in two ways. In the analytical ap-
proach, GAS calculates sensitivity indices by first calculating
conditional expected values as polynomials and then calcu-
lating their variance (Equation 5). In the empirical approach,

GAS instead uses Monte Carlo estimators ([36, Equation 6]
as implemented in Algorithm 5).

While the analytical approach precisely calculates sensitiv-
ity indices, it is relatively slow as GAS must calculate expected
values as a function of the variable whose sensitivity is being
calculated. The empirical approach becomes more accurate as
the number of samples increases. Despite this, it can be faster
than the first approach due to the speed of evaluating MGPC .
Rapid iteration. During development of an autonomous ve-
hicle, developers may rapidly make or propose changes to the
vehicle model. GAS enables faster testing of these prototypes
with its compositional approach. If developers modify the
control or dynamics, then GAS reuses the perception model,
saving a significant amount of time since Algorithm 1 is the
major contributor to GAS’s runtime. If developers modify the
perception system, GAS must create a new perception model.
Even then, GAS still saves time if creating a new perception
model is cheaper than using the original vehicle model.

E. Properties of the GAS approach

Accuracy. Multiple GAS parameters affect the accuracy of
the GPC model: the size of the tensor grid |G|, the number of
images taken for each grid point ni, the degree of polynomial
regression used for the perception model, and the GPC order
ogpc . Under certain conditions, GAS converges in distribution
to the exact solutions.

Lemma 1 (Perception Model Convergence). Assume that
1) for the given environment distribution DE , the distribution
of the outputs of a perception NN N in any ground truth state
S is Gaussian over the perceived state, and 2) each component
of the distribution parameters (µS , σ

2
S) is an analytic function

of S. Then, the output distribution of the perception model
Mper in any state approaches N ’s output distribution at that
state as |G|, ni, and dper increase.

Proof Sketch. Increasing |G| increases the number of states S
used to train the perception model. Increasing ni increases the
accuracy of N ’s output distribution parameters calculated at
each S. These distribution parameters are analytic functions
of S, so they can be calculated using a Taylor series. After
increasing the number and accuracy of training data points, the
accuracy of the perception model can be arbitrarily increased
by increasing dper (Increasing dper without also increasing
|G| leads to overfitting.).

We use standard statistical tests such as the Shapiro-Wilk
test to check if N ’s outputs have a Gaussian distribution for the
environment distribution DE used in Section IV-B. We have
observed this to be true in practice [1, Section A][44]. We
can also use a different base distribution (and corresponding
orthogonal polynomials for GPC) if fits the data better across
the state space. Practically, controlling the error of the percep-
tion model (or any approximation of a NN) is an open prob-
lem [31]. Precise analytic calculation of the perception model
error is intractable, but we can empirically estimate the error.



TABLE I: GAS benchmarks
Benchmark Perception Control Preprocessing

Crop-Monitor ResNet-18×2 Skid-Steer Perc→Poly Reg
Cart-Straight LaneNet Pure Pursuit Perc→Poly Reg
Cart-Curved LaneNet Pure Pursuit Perc→Poly Reg
ACAS-Table Ground Truth ACAS-Xu Table Ctrl→Dec Tree
ACAS-NN Ground Truth ACAS-Xu NN Ctrl→Dec Tree

Lemma 2 (GPC Error Bound). Assume the control system
and vehicle dynamics in M ′

V are differentiable. Then, the root
mean square (RMS) error of the output of the GAS model
MGPC w.r.t. the output of M ′

V is bounded.

Proof Sketch. From [40, Theorem 3.6] and Ernst et al. [10],
which state that the RMS error of a GPC approximation is
proportional to o−p

gpc , where p is a positive value that depends
on the differentiability of the function being approximated.
The process of generating a NN output sample through the
perception model is a polynomial evaluation followed by
an affine transform – both are differentiable operations. The
control system and dynamics are differentiable by assumption.
Finally, composing differentiable functions yields a differen-
tiable function.

MGPC is the optimal polynomial model of M ′
V for any ogpc ,

in terms of ℓ2 error [40][Equation 5.9]. In practice, control sys-
tems may not be differentiable everywhere (e.g., due to mode
switching), but the differentiability of vehicle dynamics, cou-
pled with a short time step, limit negative effects on accuracy.

Corollary 1 (GPC Asymptotic Convergence). As ogpc → ∞,
RMS error of GPC approaches 0, that is, MGPC can be an
arbitrarily close approximation of M ′

V .

Proof Sketch. From Lemma 2, the RMS error is proportional
to o−p

gpc , where p is positive. Then, lim
ogpc→∞

o−p
gpc = 0.

Theorem 1 (GAS Convergence). Assume that the distribution
of the outputs of a perception NN N in any ground truth state
is Gaussian. Then, the GAS model MGPC converges in output
distribution to the original vehicle model MV .

Proof Sketch. We can use arbitrarily accurate perception mod-
els (Lemma 1) to get accurate NN output samples for any state
in Dsafe

S . The GPC model can be made an arbitrarily accurate
approximation of M ′

V (Corollary 1), and thus of MV .

Runtime. The dominant factor for runtime is the required
number of evaluations of MV . To gather data for the per-
ception model, GAS requires Θ(|G|ni) evaluations of MV .
The amount of time required to train Mper and construct
MGPC is insignificant in comparison. For state distribution
estimation over time, we must evaluate MV or the much faster
MGPC Θ(nsT ) times. For estimating sensitivity indices using
estimators, we must evaluate either M ′

V or MGPC Θ(ns)
times and then calculate mean and variance of the samples.

V. METHODOLOGY

Benchmarks. We chose five benchmarks that include au-
tonomous vehicle systems such as self driving carts, unmanned

aircraft, and crop monitoring vehicles. Table I shows details
of the benchmarks. Columns 2 and 3 state the vehicle’s
perception and control system, respectively. Column 4 indi-
cates if GAS made a replacement in the perception (Perc) or
control (Ctrl) system, and the nature of the replacement (Poly
Reg: polynomial regression, Dec Tree: decision tree). Each
benchmark has a total of 4 state or random variables. The
benchmarks are:

• Crop Monitoring Vehicle. Our main example, described
in detail in Section II.

• Self-Driving Cart (Straight Path). A vehicle that must
drive within a marked path (Dsafe

S ≡ |heading | ≤ π/12∧
|distance| ≤ 1.2m). It uses LaneNet to perceive the lane
boundaries and the pure pursuit controller. We derive this
benchmark from [8] and use [28].

• Self-Driving Cart (Curved Path). Similar to the previ-
ous benchmark, but the vehicle must drive on a circular
path of radius 100m.

• Unmanned Aircraft Collision Avoidance (Lookup Ta-
ble). An unmanned aircraft that must avoid a near miss
with an intruder (Dsafe

S ≡ |separation| ≥ 0.1524km). The
aircraft uses ACAS-Xu lookup tables from [21]. As this
model’s state includes a categorical variable (the previous
ACAS advisory), we use ME-GPC and predict the next
advisory using a decision tree as the ancillary model.

• Unmanned Aircraft Collision Avoidance (Neural Net-
work). Similar to the previous benchmark, but uses an
NN from [21] trained to replace the lookup table.

Implementation and experimental setup. We performed our
experiments on machines with a Quadro P5000 GPU, using
one Xeon CPU core. We implement GAS in Python, using
chaospy [13]. We use Gazebo 11 [23] to capture images
for the Crop-Monitor and Cart benchmarks. We run all vision
DNNs on GPU, and the smaller ACAS-NN on CPU.

For our main evaluation, we create only GPC surrogate
models with GAS. For estimating state distribution over time,
we compare the GAS-generated MGPC to a MCS baseline
using MV . We set GAS parameters as follows: G is a 11×11
grid in Dsafe

S , ni = 350, and ogpc = 4. We also experiment with
alternate values for G and ni, as they directly affect perception
model training data generation time. We set the number of time
steps T = 100. To keep MCS runtime within 24 hours, we set
ns = 1, 000 for MCS. For GAS, we increase ns to 10,000 as
MGPC is much faster than MV and increasing the number of
samples decreases sampling error for MGPC .

We calculate sensitivity using both the analytical and em-
pirical method described in Section IV. It is not possible to
compare sensitivity indices against MV , as MV has a different
set of inputs (environment specification instead of a sample
from N (0, 1)). Therefore, we use sensitivity index calculation
using M ′

V as the baseline. For the empirical method, we set
ns = 106, but also monitor the results obtained by setting
ns to 104, 105, and 107. We calculate the sensitivity of state
variables to those in the previous time step, as well as the
sensitivity of the change in the state variables.



TABLE II: Metrics for comparing state variable distributions
Benchmark Variable µGAS/µMCS σGAS/σMCS KS

max
Wass
max

Crop-Monitor Heading (rad) -0.004/-0.008 0.04/0.04 0.11 0.02
Distance (m) -0.01/-0.02 0.03/0.03 0.14 0.01

Cart-Straight Heading (rad) 0.0004/-0.0001 0.02/0.02 0.13 0.009
Distance (m) 0.16/0.08 0.09/0.12 0.41 0.08

Cart-Curved Heading (rad) -0.003/-0.005 0.006/0.007 0.17 0.003
Distance (m) 0.18/0.19 0.04/0.05 0.15 0.02

ACAS-Table
Crossrange (km) -0.07/-0.03 0.85/0.88 0.05 0.04
Downrange (km) -0.61/-0.53 0.23/0.22 0.13 0.08
Heading (rad) 0.63/-0.54 2.82/2.80 0.23 1.23

ACAS-NN
Crossrange (km) -0.01/-0.01 0.93/0.91 0.02 0.03
Downrange (km) -0.45/-0.58 0.17/0.11 0.31 0.13
Heading (rad) 0.42/0.15 2.70/2.75 0.06 0.27

TABLE III: Metrics for comparing the proba-
bility of remaining in a safe state

Benchmark t-test ℓ2 err X-Cor

Crop-Monitor 99/100 0.004 0.974
Cart-Straight 97/100 0.001 0.862
Cart-Curved 98/100 0.001 0.865
ACAS-Table 100/100 0.007 0.998
ACAS-NN 100/100 0.003 0.999

TABLE IV: Max diff. in sensitivity indices
Benchmark x0→y1 x0→dy0

Crop-Monitor 0.00003 0.0004
Cart-Straight 0.0002 0.006
Cart-Curved 0.00003 0.003
ACAS-Table 0.00001 0.009
ACAS-NN 0.00002 0.061

Environmental factors. For the Crop-Monitor benchmark,
our test scenario includes two crop types, four crop growth
stages, and multiple models per stage (total 30). For the
Cart benchmarks, our scenario includes the presence of 0-2
other carts, 0-2 pedestrians, and skid marks that obstruct lane
markings. We also vary lighting conditions (midday to dusk).
All images representing these conditions are captured from the
simulators.
Distribution similarity metrics. We compare each dimension
of the MCS and GAS state distributions at each time step
using two complementary metrics. The conservative KS statis-
tic quantifies the maximum distance between the cumulative
distribution functions of the two distributions at any point.
The Wasserstein metric quantifies the minimum probability
mass that must be moved to transform one distribution into
the other. For both metrics, a lower value indicates greater
distribution similarity. We can use these distribution similarity
metrics despite using more samples for GAS than for MCS.
Safe state probability similarity metrics. We also compare
the fraction of simulated vehicles remaining in the safe region
till each time step using three metrics. The two sample t-test is
a statistical test to check if the underlying distributions used
to draw two sets of samples are the same. The ℓ2 error is
the RMS of the differences in safe state probability at each
time step. Lastly, we calculate the Pearson cross-correlation
coefficient between the two sets of safe state probabilities.
When plotting safe state probability, we also draw the 95%
bootstrap confidence interval. This confidence interval does not
directly compare the two plots, but rather, for each individual
plot, it provides an estimate of the variation that can occur in
that plot as a result of sampling error.

VI. EVALUATION

A. Estimating the probability of violating a safety property

Table II compares the distributions calculated by GAS and
MCS for each benchmark state variable. Columns 3-4 compare
the mean and standard deviation of the distributions at the
final time step. Columns 5-6 show the maximum values of
the KS statistic and Wasserstein metric over all time steps.
For most state variables, the mean and standard deviation

of the distributions match closely up to the final time step.
This is also indicated by the low values of the Wasserstein
metric and the conservative KS statistic. The largest difference
is for the Cart-Straight benchmark distance distribution. This
occurs because the GAS model and the original vehicle model
converge towards slightly different states around the center of
the safe state space in later time steps. However, during the
initial time steps where more simulated vehicles are in danger
of entering unsafe states, the KS statistic does not exceed
0.15. A similar phenomenon affects the ACAS-NN downrange
distance variable. For ACAS-Table, the GAS and original
vehicle models occasionally turn in different directions to
avoid an intruder approaching head-on, in situations where
turning in either direction is equally beneficial. This leads to
a large deviation in the heading variable.

Figure 6 shows the evolution of the probability that the
vehicle remains in a safe state. The blue solid and red dashed
plots show the probability estimates by GAS and MCS,
respectively. The shaded region around each plot shows the
95% bootstrap confidence interval. Because we use 10× more
samples when estimating safe state probability with GAS as
compared to MCS, the sampling error is smaller for GAS,
which leads to a smaller confidence interval. Table III shows
the metrics we use to measure the similarity of the safe state
probabilities from Figure 6. Column 2 shows the number
of time steps for which the t-test passed, meaning that we
could not reject the null hypothesis that the probabilities are
equal. Column 3 shows the ℓ2 error, and Column 4 shows
the cross-correlation. The similarity of the state distributions
directly leads to the similarity of the safe state probability
for most time steps. We extended the Crop-Monitor and Cart
experiments to 500 time steps to confirm that the safe state
probability does not deviate after 100 time steps. We did not
similarly extend the ACAS experiments as the ACAS system
is primarily relevant as the aircraft approach each other.

B. Estimating sensitivity indices

Table IV presents the maximum difference between sen-
sitivity indices calculated using MGPC and those calculated
using M ′

V . We found that about 106 samples are needed for



Fig. 6: Evolution of safe state probability over time. Blue solid: GAS, red dashed: MCS.

convergence of the sensitivity indices when using empirical
estimators [1, Section B]. Column 2 shows the sensitivity
of state variables in time step 1 to those in time step 0
(x0 → y1) and Column 3 shows the sensitivity of the change
in the state variables (x0 → dy0, where dy0 = y1−y0). The
sensitivity indices calculated using MGPC and M ′

V match
closely – the average difference in sensitivity indices estimated
using MGPC and M ′

V is 0.00003 in Column 2 and 0.005 in
Column 3, indicating that GAS accurately estimates sensitivity.

C. Impact of perception model parameters on accuracy

Table V describes the effects of changing the perception
model parameters G and ni. Column 1 presents the param-
eter value. Columns 2-4 present the maximum KS statistic
and Wasserstein metric (×100) for the Crop-Monitor, Cart-
Straight, and Cart-Curved benchmarks, respectively. Column 5
presents the speedup caused by changing the parameter value,
estimated based on the change in the number of images that
must be processed. We exclude the ACAS benchmarks as they
do not use a perception model.

TABLE V: Effect of changing perception model parameters
on accuracy. An asterisk (*) indicates the primary value used
in our evaluation. Changes of 10% or more are highlighted.
Parameter KS

max
×100/Wass

max
×100 Relative

Value C-Mon C-Str C-Cur Speedup

Ground truth grid dimensions (G)

7× 7 20.3↑ / 2.43 46.8↑ / 9.63↑ 23.8↑ / 3.24↑ 2.5×
9× 9 12.2↓ / 2.25 42.4 / 8.39 16.2 / 2.00↓ 1.5×
11× 11* 13.8 / 2.37 41.1 / 7.97 17.0 / 2.23 1.0×

Images captured per grid point (ni)

100 33.1↑ / 2.34 49.6↑ / 9.77↑ 18.7↑ / 2.59↑ 3.5×
225 16.1↑ / 2.35 40.5 / 7.91 17.0 / 2.43 1.6×
350* 13.8 / 2.37 41.1 / 7.97 17.0 / 2.23 1.0×

We focus on the cases where the error metrics change by
10% or more. The grid size G can be reduced to 9 × 9
without much loss of accuracy, but further reducing it to 7×7
increases the error for all benchmarks. Reducing the number of
images captured at each grid point (ni) to 225 does not cause
much loss of accuracy, but further reducing it to 100 images
increases the error for all benchmarks. The minimal change
in accuracy caused by increasing G from 9× 9 to 11× 11 or
increasing ni from 225 to 350 also shows that further increases
are unlikely to improve the accuracy of GAS.

D. Speed of GAS model compared to the original model

GAS model construction. Table VI shows the time required
to construct the GAS model. Column 2 shows the time
required to gather training data for the perception model,
Column 3 shows the time required to create the perception
and/or ancillary model, and Column 4 shows the time required
to create MGPC . Creating the perception, ancillary, and GPC
models takes a few seconds, but gathering training data for
the perception model takes several hours. Section VI-C shows
how reducing the perception model parameters |G| and ni can
reduce this time, but at the cost of accuracy.
State distribution estimation. Table VII shows the time
required by GAS and MCS for state distribution estimation.
Column 2 shows the time required for using MV . Column 3
shows the total time required by MGPC – this includes the
total time required to construct MGPC (from Table VI) and
then use it for state distribution estimation via Algorithm 4.
Column 3 also shows the speedup of GAS over MCS. The
costly process of gathering and processing images contributes
to over 99% of tMCS for the Crop-Monitor and Cart bench-
marks. While increasing ns or T increases tMCS significantly,
the corresponding increase in tGAS is negligible as the time
required to create the perception model is independent of ns

and T . Consequently, the speedup of GAS for state distribution
estimation increases for longer experiments or higher number
of samples. For the ACAS benchmarks, the control component
of MV contributes to over 90% of tMCS . MGPC is faster than
even the dynamics component of MV , leading to significant
speedups for these benchmarks.
Sensitivity analysis. Table VIII shows the time required by
GAS and MCS for sensitivity analysis. Columns 2-3 show
the required for calculating all sensitivity indices empirically
with M ′

V and MGPC respectively. Column 4 shows the time
required calculating all sensitivity indices analytically with
MGPC . Columns 3-4 also show the speedup of GAS for
either approach. As both M ′

V and MGPC use the perception
model for the first three benchmarks, we exclude the time
required to train and construct the perception model for those
benchmarks. The replacement of the perception system by the
perception model significantly speeds up M ′

V as compared
to MV and also enables vectorization. As this optimized
version is the baseline for sensitivity indices calculation, the
speedup of GAS for this application is lower than that for
distribution estimation. The analytical and empirical methods
for calculating sensitivity using MGPC have similar accuracy,



TABLE VI: Time usage for creating
GAS surrogate model MGPC

Benchmark tdata tper/anc tGPC

Crop-Monitor 8.5h 1.1s 1.4s
Cart-Straight 3.3h 1.1s 1.4s
Cart-Curved 3.1h 1.1s 1.4s
ACAS-Table N/A 0.3s 0.3s
ACAS-NN N/A 0.3s 0.4s

TABLE VII: Time usage for state
distribution estimation
Benchmark tMCS tGAS

Crop-Monitor 19.5h 8.5h (2.3×)
Cart-Straight 6.8h 3.3h (2.1×)
Cart-Curved 6.5h 3.1h (2.1×)
ACAS-Table 8.0s 1.1s (7.3×)
ACAS-NN 10.7s 1.2s (8.9×)

TABLE VIII: Time usage for sensitivity analysis
(excluding tdat and tper from Table VI)
Benchmark temp

MCS temp
GAS tana

GAS

Crop-Monitor 9.5s 6.2s (1.3×) 11.4s (0.7×)
Cart-Straight 9.7s 6.2s (1.3×) 11.4s (0.8×)
Cart-Curved 9.8s 6.2s (1.3×) 11.3s (0.8×)
ACAS-Table 5.2s 5.6s (0.9×) 3.3s (1.6×)
ACAS-NN 4.8s 5.3s (0.9×) 3.1s (1.5×)

but are faster for different benchmarks.
Rapid iteration. For the first three benchmarks, if the per-
ception system is altered, GAS must create a new perception
model; the speedup of GAS stays the same, but the total
amount of time saved over MCS increases with each iterative
change. However, if only the vehicle control or dynamics are
altered, then GAS does not need to create a new perception
model. Because gathering data for the perception model is
the major contributor to the runtime of GAS, this allows
vehicle developers to rapidly make changes to the control and
dynamics systems of the vehicle and reanalyze the system with
these changes within seconds.

VII. THREATS TO VALIDITY

GAS samples the provided environment distribution DE

when creating the perception model. If the scenario under test
has a significantly different environment distribution, then this
perception model may lead to a loss of accuracy. Developers
must therefore choose DE so that it represents the expected
environment distribution that the vehicle will operate in. If
developers change the environment distribution, we can still
reuse existing training data that fits in the new distribution.

To use GPC, all input variable distributions must have
corresponding orthogonal polynomials. This is true for many
distributions (uniform, normal, beta, gamma, etc.), which
together are usually sufficient for modeling relevant inputs.

As the GPC model is a polynomial, it has limited accuracy
when modeling functions with limited differentiability [40,
Theorem 3.6]. Consequently, the GPC model can have a
systemic bias that can be reduced, but not eliminated. Despite
our benchmarks having such non-differentiable points, GAS
still provides excellent accuracy. We demonstrate the applica-
bility of GAS to autonomous vehicle scenarios with various
structures and associated challenges. The applicability of GAS
for arbitrary autonomous vehicle scenarios is an open question
and an interesting topic for future work.

Advances in simulation may reduce the speedup offered by
GAS over time. We expect this reduction in speedup to be
minimal, as Algorithm 1, which is the main contributor to
GAS runtime, would also benefit from these advances.
Scalability. The GPC polynomial model suffers from the
“curse of dimensionality” (combinatorial explosion of the
number of polynomial terms) as it must consider all pos-
sible interactions between state variables. To overcome this
general limitation of GPC, researchers have proposed solutions
such as low-rank approximation [24]. Another solution is to
omit higher-order polynomial terms in which multiple state
variables interact [12]. Figure 7 shows the effects of this

Fig. 7: Effect of truncation on GPC model terms and construc-
tion time for an order 4 GPC model.

polynomial truncation approach for an order 4 GPC model.
For both plots, the X-Axis shows the number of dimensions
in the state space. The Y-Axis of the left plot shows the number
of polynomial terms in the constructed GPC model, and the Y-
Axis of the right plot shows the model construction time. The
dashed red lines and the solid blue lines show the results for
the full polynomial and the truncated polynomial, respectively.
The speedup from truncation increases rapidly with dimen-
sionality. This method still retains lower-order interaction
terms, ensuring that the constructed GPC model still accounts
for interactions between state variables to some degree. We
can adjust the aggressiveness of truncation to trade off between
analysis time and accuracy. If creating a GPC model is still
too expensive, we can forego the GPC model and directly use
the abstracted vehicle model as we did in Section VI-B.
Alternate surrogate models. We experimented with different
variations of the GPC-based approach shown in Section IV.
We also experimented with alternative types of surrogate
models, such as standard polynomial regression surrogates
(average t-tests passed: 98.2) or NN surrogates with a similar
number of parameters (average t-tests passed: 47.8). We found
that the approach presented in this paper produced the best
results (average t-tests passed: 98.8). We provide more details
of the results for the alternative approaches in [1, Section C].

VIII. RELATED WORK

Analysis and verification of vehicle systems. Many studies
have shown that simulations can detect issues with vehicle
software while saving resources over real-world testing or
verification [15, 18, 34, 38, 39]. Recent surveys [2] show
that developers in the vehicle industry use such simulation for
regression testing of proposed vehicle system modifications,
but that the high cost of simulation is a major roadblock to
integrating and deploying such tests. Recent works, e.g. [27]
have focused on test scenario selection and prioritization for



autonomous vehicles. GAS accelerates the testing of vehicles
under the selected scenarios, and can save additional time
when developers make incremental modifications.

DryVR [11] and Verse [25] are systems for verifying the
safety of autonomous vehicle models containing whitebox
mode-switching control logic composed with blackbox dy-
namics. They compute over-approximations of reachable states
with a probabilistic guarantee on the learned sensitivity. In
comparison, GAS focuses on perception and control systems
which include blackbox components such as NNs. Pasareanu
et al. [32] verify safety properties for vehicle systems with
learning enabled components. They separately analyze the
learning enabled components to derive guarantees of the
component’s behavior when certain assumptions about the
input to that component hold. Such precise verification may
not scale to large image processing NNs used to perceive
the vehicle state from camera images. GAS is able to handle
vehicle systems with such complex NNs by using sampling
to provide precise estimates of the probability that the vehicle
will violate safety properties.

Researchers have also studied the impact of environmental
conditions, e.g., identifying conditions missing in the train-
ing data [42], certifying robustness to semantic environment
perturbations [41], augmenting training data [7], and find-
ing environmental conditions that can cause large perception
errors [6]. Scenic [14] is a language for specifying scenes
in a virtual world with varying environments for generating
training images for perception NNs. Developers can use these
works when sampling and prioritizing environments for the
GAS perception model.
System simulation and modeling. Existing techniques can
create surrogate models for vehicle dynamics, e.g., using
GPC [22] or NNs [26]. Since dynamics simulation comprises
10% or less of the total simulation time, these approaches
would provide negligible speedups. GAS creates surrogate
models of complete vehicle systems, including the expen-
sive perception and control components. ARIsTEO [29] uses
abstraction refinement to create surrogate models of cyber-
physical systems with low dimensional inputs. GAS handles
high-dimensional image inputs by first creating a perception
model, and then creating a surrogate model of the reduced-
dimensionality abstract vehicle model. Morando et al. [30] use
surrogate safety measures to calculate how close autonomous
vehicles come to collision, which is orthogonal to creating
surrogate models of vehicle systems. The ACAS safety prop-
erty is one such surrogate safety measure. Several approaches
[5, 17, 43] create surrogate models to estimate the final
result of testing vehicles in particular scenarios, and use these
surrogates to efficiently find potentially dangerous scenarios
for additional in-depth testing. GAS can further speed up this
additional testing of the selected scenarios.
Simplification of complex perception and control systems.
Ghosh et al. [16] iteratively synthesize perception models and
controllers guided by counterexamples to temporal logic safety
properties. Hsieh et al. [20] create a perception model where
the mean is calculated using piecewise linear regression and

the allowable variance is calculated based on the controller
code using program analysis tools like CBMC. Astorga et
al. [4] synthesize perception contracts, which describe the
uncertainty that the perception system can generate, and the
control and dynamics system can tolerate, without violating
safety properties. Researchers have used similar perception
contracts for analysis of vision-based formation control [19]
and automated landing [37]. Unlike these works, GAS’s per-
ception model is independent of the controller, and can be
reused without requiring additional sampling when iterative
changes are made to the controller during development.

IX. CONCLUSION

We presented GAS, the first approach for creating surrogate
models of complete autonomous vehicle systems with complex
perception and/or control components. GAS first creates a
model of the perception system and uses it to generate a
surrogate model of the entire vehicle system. GAS accurately
models the system while being 3.7× faster on average for
safe state probability estimation and 1.4× faster on average
for sensitivity analysis than Monte Carlo Simulation on five
scenarios used in agricultural vehicles, self driving carts, and
unmanned aircraft. These speedups make GAS an attractive
choice for efficiently testing iterative modifications to the
vehicle system, such as regression testing during development.
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