
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 1

Verifying Controllers with Vision-based Perception
Using Safe Approximate Abstractions

Chiao Hsieh , Student Member, IEEE, Yangge Li , Dawei Sun , Keyur Joshi,
Sasa Misailovic , Sayan Mitra , Senior Member, IEEE

Abstract—Fully formal verification of perception models is
likely to remain challenging in the foreseeable future, and yet
these models are being integrated into safety-critical control
systems. We present a practical method for reasoning about
the safety of such systems. Our method is based on systemat-
ically constructing approximations of perception models from
system-level safety requirements, data, and program analysis
of the modules that are downstream from perception. These
approximations have some desirable properties like being low-
dimensional, intelligible, and tractable. The closed-loop system,
with the approximation substituting the actual perception model,
is verified to be safe. Establishing formal relationship between
the actual and the approximate perception models remains well
beyond available verification techniques. However, we do provide
a useful empirical measure of their closeness called precision.
Overall, our method can trade off the size of the approximation
against precision. We apply the method to two significant case
studies (a) a vision-based lane tracking controller for an au-
tonomous vehicle and (b) a controller for an agricultural robot.
We show how the generated approximations for each system can
be composed with the downstream modules and be verified using
program analysis tools like CBMC. Detailed evaluations of the
impacts of size, and the environmental parameters (e.g., lighting,
road surface, plant type) on the precision of the generated
approximations suggest that the approach can be useful for
realistic control systems.

Index Terms—Formal verification, vision-based control, au-
tonomous systems, abstraction

I. INTRODUCTION

COMPUTER vision algorithms, and in particular deep
neural network (DNN) models, are now indispensable in

autonomous systems, but research on rigorous safety analysis
of vision-based control systems is sparse. Motivated by safety
criticality of autonomous systems, the problem of verifying
neural networks has received keen attention (see [1]–[6], and
the references therein1). In the meantime, techniques and
limitations of system-level safety remain poorly understood.
Regulatory agencies from many industries – aerospace [7],
automotive [8], robotic surgery, and manufacturing – are
creating processes and guidelines, and a small number of
recent research papers are starting to tackle this problem [9]–
[14] (see Section II).

Investigating verification of vision-based control systems is
interesting from two perspectives: (1) Even though writing

Manuscript received April 07, 2022; revised June 11, 2022; accepted July
05, 2022. This article was presented at the International Conference on
Embedded Software (EMSOFT) 2022 and appeared as part of the ESWEEK-
TCAD special issue. This work was supported in part by NSF under Grant
NSF-SHF-200888, USDA/NIFA under Grant 2021-67021-33449, and the
Boeing Company.

The authors are with the University of Illinois at Urbana–Champaign,
Urbana, IL 61801 USA (email: chsieh16@illinois.edu)

1The neural network verification competition [6] had twelve research teams.

formal requirements for CNN perception models may be ill-
posed [15], safety requirements for autonomous systems using
CNN models are usually fairly obvious. A “lane” may be
difficult to specify in terms of pixel intensity thresholds, but
the safety requirements of a lane keeping control system
are less mysterious. (2) It is well-known that CNNs have
fragile decision boundaries and are susceptible to adversarial
inputs [16]. Since the existing NN verification tools verify
properties around a small neighborhood of the input space,
the presence of adversarial inputs makes the NN verification
results conservative. On the other hand, system-level safety
analysis deals with the temporal evolution of the whole sys-
tem (including the NNs), and therefore, could benefit from
the smoothness of natural signals, and be more robust to
occasional misclassifications. Such robustness has indeed been
empirically observed [17].

In this paper, we propose a safety assurance technique of
perception-based control systems. Our approach is inspired
by notions of abstraction and compositional reasoning. An
exact abstraction P (or over-approximation) of a sensing and
perception subsystem P is obviously useful: if the abstract
system obtained by substituting actual perception P with the
abstract P can be verified, then we can infer safety of the
original concrete system. If a model of a perception system
(abstraction or otherwise) can substitute P and the resulting
system can be verified, then we say that the model is verifiable.

However, the problem of proving that P is an exact abstrac-
tion of actual perception P , is at least as hard as the neural
network verification problem. So, in this paper, we propose
a pragmatic path forward: a model M for P is constructed,
which still enjoys verifiability, and the abstraction relationship
between M and P will have some error that can be estimated
arbitrarily precisely with high probability.

Another benefit of the above approach is that we can
choose an intelligible structure for the approximation M .
That is, M not only proves safety but helps explicate why
the overall system is safe and where it deviates from the
actual perception P . The importance of such explanations has
been argued in [18], [19]. While firmly claiming intelligibility
requires user studies beyond the scope of the current paper,
our construction does enable succinct English description of
M and visualization of its error with respect to P .

Our main claim is that this is one of the first2 approaches
to provide safety assurances for realistic vision-based control
systems with abstractions, approximate or otherwise. We use
a piece-wise affine template for M : Suppose the ground truth
perception input to the control system is m∗(x), at a given

2The only other closely related works are [10] and [11].

https://orcid.org/0000-0001-8339-9915
https://orcid.org/0000-0003-4633-9408
https://orcid.org/0000-0003-2458-5958
https://orcid.org/0000-0001-7319-8845
https://orcid.org/0000-0001-7082-5516
mailto:chsieh16@illinois.edu

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2

state x. In the actual vision pipeline, P estimates m∗(x) using
images, which depend on the state x and also environmental
parameters e such as lighting and weather conditions. These
environmental parameters e can add bias and variance in
the estimation. Thus, M(x) will be a set-valued function to
account for such variations, where the center (mean or bias)
of the set is a piece-wise affine function Ai(m

∗(x)) + bi of
the ground truth m∗(x). We can infer the linear model using
regression on the output from the vision pipeline P on images
and their ground truth labels.

While the center (mean) of the set M(x) is defined by train-
ing data, the size and shape of the set (variance) are inferred
from the safety property. Assume that the control system with
perfect perception is safe with respect to a given unsafe set U .
Using program analysis tools like CBMC [20] and IKOS [21]
on the controller code, we infer the set of unsafe perception
outputs for any x. Then, the set-valued output from M(x) is
determined to be the largest set, centered at Ai(m

∗(x)) +bi,
that keeps the system safe. The computation of this largest set
is an optimization problem. We call the resulting model M an
approximate abstraction of perception (AAP).

The constructed AAP M is a piece-wise affine set-valued
function of the actual variable that the perception system P is
trying to estimate. By construction, M is verified safe relative
to a given property U . We also double-check this using CBMC
by plugging in M into the downstream modules of the control
system. Finally, we empirically evaluate the precision of the
constructed AAPs, i.e., the error between M and P , across
large environmental variations such as roads with varying
numbers of lanes, lighting conditions, different types of crops.

We apply the method to two realistic end-to-end au-
tonomous systems using the Gazebo simulator for rendering
images and detailed vehicle control models: a vision-based
lane tracking controller for an electric vehicle and a vision-
based corn row scouting robot. For both case studies, our
method can compute the AAP in few seconds for each part of
state space in a simple grid partition. On the positive side, for
parts of the state space, with a probability of at least 0.9, we
observe the precision of M approximating P is over 90%. This
analysis tells us that the end-to-end system is safe for these
parts of state space, because the verifiable-by-construction
M is likely to be an exact abstraction of P in these parts.
Somewhat counter-intuitively, we observe that error between
M and P can be high in some very safe states (e.g., vehicle
at the center of the lane and aligned with the lane). While
these states happen to be the ones where safety assurance is
less important in practice, we discuss why this makes sense
and how to address it with different verification techniques or
multi-resolution approximation. In addition, we discuss how to
use sublevel set partitioning to address the exponential growth
of the number of parts using grid partitioning.

In summary, our contributions are: (1) Formalization of ver-
ifiable approximate models for vision-based perception used
in autonomous systems. (2) An approach to compute piece-
wise affine set-valued approximations. (3) Demonstration that
the constructed approximations can be composed with the
downstream modules for end-to-end verification using existing
techniques. (4) Careful empirical evaluation of precision of

the verified approximations on two significant case studies.
(5) An analysis and simulation framework for two realistic
vision-based control systems to be released on open source
platforms. Safety, intelligibility, and precision appear to be
useful dimensions for thinking about AAPs. The constructed
approximate abstractions are useful for verification, identifying
where perception fails, which can, in turn, help design better
perception and help define system-level operating design do-
mains (ODDs) [22].

II. RELATED WORKS

Simulation-based testing is the most common technique for
the system level analysis. It evaluates on the whole system,
provides useful debugging information, but cannot provide a
proof of safety. In contrast, our analysis exploits the decompo-
sition of an autonomous system’s pipeline and gives a formal
proof of the system safety under a strong assumption that the
AAP over-approximates the perception component. We further
discuss other related techniques.

Analysis of closed-loop systems with NNs: There is a
closely related line of work on the analysis of closed-loop
systems with ML-based perception. VerifAI [9] uses tech-
niques like fuzz testing and simulation to falsify the system
specifications. Our work provides a safe approximation and
therefore complements the falsification approaches of VerifAI.

Our work is similar in spirit to the idea of using abstrac-
tion/contracts for perception components in the white paper
by Păsăreanu et al. [23]. Following this idea, Katz et al. [11]
in particular trains generative adversarial networks (GANs) to
produce a simpler network. This simpler network transforms
states and environment parameters to estimates similar to our
AAP. In comparison, our work provides an intelligible set-
valued function instead.

In addition, Dean et al. [12] considers synthesizing robust
perception based controller. Ghosh et al. [10] uses VerifAI [9]
for counter-example guided controller synthesis with percep-
tion models. Plenty of recent works focus on verification [3],
[24]–[26], reachability analysis [5], [27]–[30], statistical model
checking [31], and synthesis [32] on neural feedback sys-
tems with neural network controllers. Such controller NNs
are typically very small compared to perception CNNs. To
our knowledge, the case study with the largest image input
dimension is NNLander-VeriF [13], which encodes formal
camera models for black-white images with 16 × 16 pixels
and verifies them along with NN controllers using existing
neural network verification tools. Our work is the first to
provide intelligible AAPs for highly cited CNN-based per-
ception pipeline, LaneNet [33], and guarantees safety for the
approximated closed-loop system.

Isolated neural network verification: Recently, there are
many works on verifying an isolated neural network such as
ReLuplex [1], NNV [3], Verisig [5], etc. We refer readers to a
summary of the VNN competition [6] for a complete list. It is,
however, challenging for these isolated NN verification tools
to analyze ML-based Perception. It is pointed out in [34] that
the perception NN used for a small UAS is significantly larger
than any NN verified in [6], and so are the NNs in our study.
GAS [14] analyzes the impact of NN perception uncertainty

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3

Fig. 1. Vision-based lane tracking control system (LTC) on AV platform.

on vehicles using an approximated model and Generalized
Polynomial Chaos. Unlike our approach, the perception model
from GAS does not incorporate system-level specifications.

Interpretability: Research in explainable AI (XAI) and
interpretable machine learning (IML) has grown explosively
(400+ publications on interpretability in 2020 [35]). The
survey articles [18], [35], [36] provide overviews of XAI for
text, image, and tabular models. Prominent techniques use
feature importance [37], Shapley values [38], and counter-
factual explanations [39]. Our piece-wise affine models are in-
terpretable models of CNNs in the context of control systems—
something we have not seen in the literature. In the XAI
parlance, our method provides model-agnostic, global inter-
pretations of image-based AI models. Our approximate models
help with transparency, or equivalently intelligibility, in that
they can help a human to understand the functioning of the
perception system through visualizations and succinct English
descriptions of the model’s relationship to ground truth, as
discussed in Section V-B.

III. SYSTEM-LEVEL SAFETY ASSURANCE

The problem of assuring safety of a control system can
be stated as follows: Given a control system or a program
Sys on a state space X , we would like to check that it
satisfies an invariant I ⊆ X . For example, for a lane tracking
control system (LTC) for a vehicle in Fig. 1, the invariant
requirement is that the vehicle always remains within the lanes.
This textbook statement of the problem is complicated by two
factors in an actual autonomous system.

First, Sys uses vision for perception – converting pixels
to percepts such as deviation from lane-center, and such per-
ception systems are not amenable to formal specification and
verification. Secondly, the output of the perception pipeline
depends on environmental factors E such as lighting, texture,
and pavement moisture. These dependencies are neither well-
understood nor controllable.

A. System Description

We model the complete control system as a discrete time
transition system Sys with four components transforming
different types of data (Fig. 2). The vision-based perception
pipeline takes an image (or a high-dimensional vector) p as an
input and produces a percept or a low-dimensional estimate
vector z = h(p) as the output. In a lane tracking control
system (LTC), z is the position of the camera relative to the
lanes seen in the image. That is, we model the perception
pipeline as a function h : P → Z mapping the space of
images P to the space of percepts Z .

Fig. 2. Closed-loop model of LTC Sys with camera and CNN-based
perception.

The control module takes a percept z as an input and
produces a control action u = g(z) as the output. In LTC,
the control action u is a vector of throttle, steering, and brake
signals. The implementation of the controller control may
involve a number of modules, including navigation, planning,
and optimization. Abstractly, control is a function g : Z → U
mapping the space of precepts to the space of control actions.

Then dynamics defines the evolution of the system state
x as a function of the previous state and the output from the
control . We model the dynamics as a function f : X ×U →
X . In our example, the state x of the vehicle includes its
position, orientation, velocity, etc., and the dynamics function
defines how the state changes with a given control action u ∈
U . In this paper, we consider discrete time models, and write
the state at time t+ 1 as

xt+1 = f (xt,ut),

where xt and ut are the state and the control actions at time t.
This state transition function could be generalized to a relation
to accommodate uncertainty, without significantly affecting
our framework or the results.

The final component closing the loop is the sensor which
defines the image p as a function of the current state x and a
set of non-time varying, environmental parameters e. For LTC,
these parameters include, for example, lighting conditions,
nature of the road surface, types of markings defining lanes,
etc. We model the sensor as a function s : X×E → P , where
E is the space of environmental parameter values. In a real
system, we may not know all the environmental parameters,
they may not be time-invariant, and their precise functional
influence on the image will also be unknown. Therefore, it
does not make sense to prove anything mathematically about
s . For the purpose of generating AAPs of h ◦s , we reasonably
assume that we can sample inputs of s according to some
distribution over E and X . Based on the samples, an empirical
precision of the AAP can be computed. In Proposition 4, we
also give a lower bound for the actual precision of the AAP
using the empirical precision. In our experiments, we generate
synthetic data using a simulator, and the same could also be
done with the actual vehicle platform at a higher cost.

B. Assurances for the Closed-loop System

The behaviors of the overall system are modeled as se-
quences of states called executions. Given an initial state
x0 ∈ X and an environmental parameter value e ∈ E, an

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 4

execution of the overall system α(x0, e) is a sequence of states
x0,x1,x2, . . . such that for each index t in the sequence:

xt+1 = f (xt, g(h(s(xt, e)))). (1)

We would like to have methods that can assure that, given
a range of environmental parameter values E0 ⊆ E, an unsafe
set U ⊆ X , and a set of initial conditions X0 ⊆ X , none of
the resulting executions of the system from X0 can reach U
under any choice of E0. Such a method will be a useful tool in
checking safety of autonomous systems. Secondly, it can help
search for E0 for which the system can (and cannot) be assured
to be safe and, therefore, can be used as a scientific basis for
specifying the operating design domain (ODD) [8] for the
control system (and direct expensive field tests, respectively).
Since, the functions s and h are partially unknown with
unknown dependence on e and x, it is unreasonable to look for
the above type of methods. Instead, in this paper, we develop
a method for the following weaker problem:

Problem.: Given an unsafe set U ⊆ X and a range for
the parameters E0 ⊆ E, find an approximation M of the
perception system h ◦ s , such that it is:
(a) Safe, i.e., M used in the closed-loop system substituting

h ◦ s makes the resulting system provably safe against U .
(b) Intelligible, i.e., human designers can understand the be-

havior of M .
(c) Precise, that is, M and h ◦ s are close.
M may and indeed will depend on the unsafe set U . For

the substitution in (a) to make sense, we make M a set
valued function to accommodate variations in h ◦ s from
different environments. Since the actual perception system h◦s
and its dependence on the environment E is incompletely
understood, assertions about the closeness to precision (c) have
to be statistical. We will see later that indeed fine-grained
measurement of closeness is possible.

C. An Example: Vision-based Lane Keeping

The details of the lane tracking control system (LTC) model
(of Fig. 1 and 2) are as follows.

a) Dynamics and control: The vehicle state x ∈ X
consists of the 2D position (x, y) of the center of the front
axle in a global coordinate system, and the heading angle θ
w.r.t the x-axis. The input u ∈ U is the steering angle δ.
The discrete time model is the well-known kinematic bicycle
function [40] f (x,u):

xt+1 = xt + vf · cos(θt + δ) ·∆T
yt+1 = yt + vf · sin(θt + δ) ·∆T

θt+1 = θt + vf ·
sin(δ)

L
·∆T

where vf is the forward velocity, L is the wheel base, and ∆T
is a time discretization parameter.

The input to f comes from the decision and control program.
Here we use the standard Stanley controller [41] for lateral
control of vehicles. This controller uses the percept z ∈ Z ,
which consists of the heading difference ψ and cross-track
distance d from the center of the lane to the ego-vehicle. In
Fig. 3, the heading θ coincides with the negation of heading
difference −ψ, but this happens only in the special case where

Fig. 3. State (x, y, θ) and perception variables (d, ψ) for lane keeping.

the lane is aligned with the x-axis. The controller function g(z)
is defined as:

δ = g(d, ψ) =


ψ + arctan

(
K·d
vf

)
, if

∣∣∣ψ + arctan
(
K·d
vf

)∣∣∣ < δmax

δmax, if ψ + arctan
(
K·d
vf

)
≥ δmax

−δmax, if ψ + arctan
(
K·d
vf

)
≤ −δmax

where δmax is the steering angle limit and K is a controller
gain parameter.

b) Perception: The complicated perception pipeline es-
timates heading difference ψ and cross track distance d using
several computer vision functions. First, the sensor function
s uses cameras to capture an image and processes the image
through cropping, undistortion, resizing, etc., to prepare the
image p for the neural network. The particular neural network
used here is LaneNet [33] which uses 512×256 RGB images
to detect lane pixels. Internally, LaneNet contains two 18-layer
sub-nets for the identification and instance segmentation of
lane marking pixels; then curve fitting is applied on identified
pixels to represent each detected lane as a polynomial function.
Further, the perspective warping is applied to map the lanes
to the bird’s eye view, which gives the percept z = (d, ψ) as
shown in Fig. 2.

c) System safety requirement: A common specification
for lane keeping control is to avoid going out of the lane
boundaries. We assume the vehicle is driving on a straight road
with lane width W . For the purpose of simplifying exposition,
we assume that the center line is aligned with the x-axis of the
global coordinate system. Thus, the unsafe set can be specified
as U = {(x, y, θ) | |y| > 0.5W} .

IV. SAFE APPROXIMATED ABSTRACT PERCEPTION

In this section we will discuss our method for construct-
ing the approximation M for the perception system h ◦ s .
Section IV-A sets the stage. It shows that plugging in any
set-valued approximation M of h ◦ s naturally defines an ap-
proximation Ŝys(M) of the original system Sys . Section IV-B
presents the main algorithm for constructing a particular
structure of M . It learns, from perception data, the center
(mean) of the output set M(x). Section IV-C defines the next
step in the construction of M . This step analyzes the control
program f ◦ g to optimize the shape and the size of the output
set around the mean to assure the safety of Ŝys(M) with
respect to the unsafe set U . Section IV-D establishes the safety
of the constructed M , not only at the theoretical model level,
but it also shows how M can be plugged into the rest of the
Sys code and verified using program analysis tools, namely
CBMC [20] in our work. Finally, Section IV-E discusses our
methods for empirically evaluating the precision of M .

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 5

A. Approximate Abstract Perception in Closed-loop

We will construct a set-valued perception function M that
approximates the complex perception system h ◦ s . For the
safety requirement, our constructed function M : X → 2Z

should be such that when it is “substituted” in the closed-
loop system of Equation (1), the resulting system is safe with
respect to the requirement U . Formally, substituting h ◦s(x, e)

with M(x), the result is the non-deterministic system Ŝys(M)
given by:

xt+1 ∈ {f (xt, g(z)) | ∃z ∈M(xt)}.
That is, when the actual system state is xt (and the envi-
ronmental parameters e), then the output from the abstract
perception function M can be anything in the set M(xt).
This set-valued approach is a standard way of modeling noisy
sensors. Notice that M is independent of environments.

Definition 1. A function M : X → 2Z is an abstraction of
h ◦ s if:

∀e ∈ E,∀x ∈ X .h ◦ s(x, e) ∈M(x).

This definition requires M(x) covers all possible percepts
from h ◦ s(x, e) for all states and environments, and that is
why it is an abstraction.3 If a function M is an abstraction of
h◦s , then it follows that Ŝys(M) is an abstraction of Sys , that
is, the set of executions of Ŝys(M) contains the executions of
Sys . Therefore, any state invariant I ⊆ X for Ŝys(M) carries
over as an invariant of Sys .

Proposition 1. If M is an abstraction of h ◦ s then Ŝys(M)
is an abstraction of Sys .

Fixing an arbitrary initial state x0 and an environment e,
Proposition 1 follows immediately from Definition 1 by:

f (x, g(h ◦ s(x, e))) ∈ {f (x, g(z)) | ∃z ∈M(x)}.
Definition 1 is too general to be useful for constructing

safe, intelligible, and precise abstractions. At one extreme, it
allows the definition M(x) := {h ◦ s(x, e) | ∃e ∈ E} which
is a symbolic abstraction but does not help with intelligibility
nor with safety. At the other end, we can make M(x) to be
the entire space of percepts Z , which may be intelligible but
not useful for safety.

Our approach is to utilize available information about safety
of the control system without perception. Informally, consider a
version of the closed-loop control system that uses the ground
truth values of ψ, d instead of relying on the vision pipeline
to estimate these values. In order to prove safety of this
ideal system with respect to U , we can use standard invariant
assertions [42]–[46] and derive inductive invariants I∩U = ∅.
We will construct M for Sys that can utilize the knowledge
of such invariants.

Definition 2. Given a set I ⊆ X and a function M : X → 2Z ,
M is preserving I if

∀x ∈ I,∀z ∈M(x), f (x, g(z)) ∈ I.
Finding an invariant preserving function satisfying Defini-

tion 2 will guide us towards creating more practical approxi-
mations of the perception system.

3We will see later that the M that we will construct cannot be guaranteed
to satisfy this requirement, but it is motivated by this idea.

Input: Subspace Xi; Invariant I; Dynamics f ; Control
g ; Ideal estimator m∗

Data: Training set of ground truth vs percepts
L = {(z∗1, z1), . . . , (z∗|L|, z|L|)}

Output: Linear transform matrix Ai; Translation
vector bi; Safe Radius ri

1 Function ComputeAAP
2 Ai, bi ← LinearRegression(L);
3 ri ← MinDist(Ai,bi,Xi,I,f ,g ,m∗);
4 return Ai, bi, ri;
Algorithm 1: Construction of the AAP M for the part
Xi. The output set is represented by a center defined by
transformation matrix Ai and a vector bi, and a ball
around the center defined by ri.

B. Learning Piece-wise Approximations from Data

For an invariant preserving abstract perception function
M : X → 2Z to be intelligible, for any x ∈ X , the output
M(x) should somehow be related to the ground truth value
z∗ ∈ Z that the perception system is supposed to estimate.
For example, for a given state x = (x, y, θ) of the vehicle in
the lane tracking system, the ground truth z∗ = (d∗, ψ∗)—
consisting of the relative position to lane center (d∗) and the
angle with the lane orientation (ψ∗)—is uniquely determined
by the geometry of the vehicle, the camera, and the lanes.
The perception system h ◦ s is designed to capture this
functional relationship between x and z (and it is affected
by the environment e). For the sake of this discussion, let
m∗(x) = z∗ be the idealized function that gives the ground
truth percept z∗ for any state x. A well-trained and well-
designed perception system h ◦ s should minimize the error4

||m∗(x)− h ◦ s(x, e)|| over relevant states and environmental
conditions. As M is an AAP of h ◦ s , to achieve precision,
M should also minimize error with respect to m∗(x).

In this paper, we consider a piece-wise affine structure of
M . This is an expressive class of functions with conceptual
and representational simplicity, and hence human readable
and comprehensible. First, given a partition with N parts
{Xi}i=1...N of the target invariant domain, i.e., I =

⋃N
i=1 Xi,

we define M as:

M(x) =


R1(m∗(x)), iff x ∈ X1

...
RN (m∗(x)), iff x ∈ XN

where we search for Ri : Z → 2Z that returns a neighborhood
around m∗(x).

In what follows, we will show how Ri’s can be derived as
a linear function of m∗(x) that is both safe with respect to
the target invariant I and minimizes error over training data
available from the perception system. ComputeAAP gives our
algorithm to compute the approximation for each Xi.

To find a candidate Ri : Z → 2Z for a given subset Xi ⊆
X , we consider that, when given z∗ as input, Ri returns a
parameterized ball defined as below:

Ri(z∗) = {z | ‖z− (Ai × z∗ + bi)‖ ≤ ri}

4The precise choice of the error function is a design parameter and we will
discuss this further in later sections.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 6

Input: Subspace Xi; Invariant I; Linear transform
matrix Ai; Translation vector bi; Dynamics f ;
Control g ; Ideal estimator m∗;

Local: Solver status status; Estimated minimum r̂;
Bound on estimated to true minimum bnd

Output: Safe radius ri ∈ R≥0

1 Function MinDist
2 solver.addVar(x, z,x′)
3 solver.addConstraints(x ∈ Xi,x′ = f (x, g(z)),x′ /∈ I)
4 solver.setObjective(‖z− (Ai ×m∗(x) + bi)‖)
5 status, r̂, bnd = solver.minimize()
6 if status is OPTIMAL or SUBOPTIMAL then

ri ← r̂ − bnd
7 else ri ← +∞ // status is INFEASIBLE
8 return ri
Algorithm 2: Minimum distance to unsafe percepts.

where the parameters Ai and bi define an affine transforma-
tion from z∗ to the ball’s center, and ri defines the radius.
Here we are using a ball defined by the L2 norm on Z .
Our approach generalizes to other norms and linear coordinate
transformations with examples in Section VII.

We start with the input to ComputeAAP in Algorithm 1.
Besides the subset Xi ⊆ X , the invariant I, aforementioned
modules f , g , and m∗, ComputeAAP also requires a training
set of pairs (z∗, z) where the z∗ = m∗(x) is the ground truth,
and z = h◦s(x, e) is the percepts obtained with the perception
pipeline. These pairs can be obtained from existing labeled
data for testing the vision pipeline or training CNNs. A labeled
data point for h is already an image p = s(x, e) sampled
from X and E and its labeled ground truth z∗ = m∗(x). In
practice, the state x = (x, y, θ) can be obtained from other
accurate sensors such as GPS to label the images. We use the
state x ∈ Xi and obtain the ground truth z∗ = m∗(x). We
then simply collect the perceived z = h(p) by applying the
vision pipeline on image p.
ComputeAAP first uses the training set of pairs of (z∗, z)

to learn Ai and bi using multivariate linear regression. The
next section describes how it infers a safe radius ri around the
center Ai ×m∗(x) + bi via constrained optimization.

C. Constructing Safe Approximations of Perception

At Line 2 of ComputeAAP, multivariate linear regression
minimizes the distance from the center line Ai×m∗(x) +bi
to the training data in Xi and computes Ai and bi. Next, we
would like to infer a safe radius ri around the center line Ai×
m∗(x) + bi. There is a tension between safety and precision
in the choice of ri. On the one hand, we want a larger radius
ri to cover more samples, making M a more conservative
approximation of h ◦ s . On the other hand, the neighborhood
should not include any unsafe perception value that can cause
a violation of I.

Formally, the set of unsafe percepts is {z | ∃x ∈
Xi.f (x, g(z)) /∈ I} and should be disjoint with the safe
neighborhood. Fig. 4 illustrates such a safe neighborhood for
one particular state x. Note that Ri has to extend to all states
x ∈ Xi, and hence we need to find a minimum ri for any

Fig. 4. Example safe neighbor function Ri inferred from linear regression
and constrained optimization.

x ∈ Xi. At the same time, we would also like ri as large as
possible to cover more perceived values. Further, Fig. 5 shows
we have to infer for all Xi in the partition.

Our solution is to find an ri just below the minimum
distance r∗ from the center Ai×m∗(x)+bi to the set of unsafe
percepts. This is formalized as the constrained optimization
problem below:
ri < r∗ = min

x∈Xi,z∈Z,x′∈X
‖z− (Ai ×m∗(x) + bi)‖

s.t. x′ = f (x, g(z)),x′ /∈ I
Observe that x ∈ Xi is a set of simple bounds on each state
variables by designing the partition. x′ /∈ I is simply the
invariant predicate over state variables. However, the third
constraint x′ = f (x, g(z)) encodes the controller g and
dynamics f in optimization constraints. Encoding the dynamic
model f as optimization constraints is a common technique
in Model Predictive Control. Encoding the controller g can
be achieved with a program analysis tool to convert each if-
branch of control laws into equality constraints between z and
controller output u = g(z). An example template for Gurobi
solver [47] is shown in MinDist.

We argue ComputeAAP computes a function Ri to return
a safe neighborhood for any ground truth percept m∗(x).
Proposition 2. For each x ∈ Xi, Ri(m∗(x)) computed by
ComputeAAP is disjoint with the unsafe percepts, i.e,
∀x ∈ Xi.Ri(m∗(x)) ∩ {z | ∃x ∈ Xi.f (x, g(z)) /∈ I} = ∅

Proof. Our proof is to analyze the possible outcome status
from the optimization solver, and propagate each outcome
through our functions. At Line 5, the solver may return the
following status:

a) The status is OPTIMAL or SUBOPTIMAL: The solver
returns a distance r̂ and a bound bnd such that the true
minimum r∗ is within the bound, i.e., r̂ ≥ r∗ and r̂−r∗ < bnd .
Modern solvers all provide the bound to address numerical
error or sub-optimal solutions. Consequently, ri = r̂− bnd at
Line 6 ensures ri < r∗; thus the ball defined by ri is disjoint
with the unsafe set.

b) The status is INFEASIBLE: The constraints are un-
satisfiable, i.e., the unsafe set {z | ∃x ∈ Xi.f (x, g(z)) /∈ I} is
proven to be ∅. We let ri = +∞ and thus Ri(x) is equivalent
to the whole space of percepts Z .

D. Verifying with AAPs: Theory and Code

In this subsection, we summarize the claim that M com-
puted by ComputeAAP indeed assures the safety of the

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 7

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0

1.0 0.5 0.0 0.5 1.0

0.5

0.0

0.5

1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0

Fig. 5. Ground truth (blue dot), perceived values (orange points), and inferred
safe neighborhood (purple circle). Notice the biases in different subspace: the
mean of the perceived values do not align with the ground truth.

approximated system Ŝys(M) and show how it can be used for
code-level verification. At a mathematical level, the safety of
M follows essentially from the construction in ComputeAAP.
Using Proposition 2, we can show that M preserves I.

Proposition 3. If every function Ri : Z → 2Z returns the
safe neighborhood of Xi for all i, then the AAP M preserves
the invariant I.

Proof. Let us fix x ∈ Xi and the corresponding ground
truth percept m∗(x), and Ri(m∗(x)) represents all percepts
allowed by Ri. Using the Ri computed by ComputeAAP, we
have shown in Proposition 2 thatRi(m∗(x)) does not intersect
with any percept that can cause the next state f (x, g(z)) to
leave I. We then rewrite it as, for each x ∈ Xi, any percept
z ∈ Ri(m∗(x)) preserves I, i.e,

∀x ∈ Xi.∀z ∈ Ri(m∗(x)).f (x, g(z)) ∈ I. (2)

Therefore, the invariant I is preserved for each subset Xi, The
proof of Proposition 3 is then to expand Definition 2 with the
body of M and extend the guarantee from Equation (2) to all
x ∈ I simply because {Xi}i=1...N covers I.

More importantly, the constructed AAP M can be plugged
into the models of the system Sys , with different levels of
detail, and verified using any number of powerful formal
verification tools that have been developed over the past
decades. For example, the abstract perception system could
be plugged into the controller g and dynamics f functions
represented by complex, explicit models, code, and differential
equations, and we can verify the resulting system rigorously.

To illustrate this point, in this paper, we showcase how to
use M with C code implementations of g and f and verify
the resulting system with CBMC [20] to gain a high-level of
assurance for the control system. Recall our piece-wise affine
AAP defined in Section IV-B, it can be directly translated into
program contracts, that is, preconditions and postconditions,
supported by numerous existing program analysis tools [20],
[48]–[50]. For instance, we are able to implement M shown
as C code in the following template with CBMC’s APIs.
Z M (X x){

CPROVER requires (
∨N
i=1 x ∈ Xi) ;

Z z = nonde t z () ; CPROVER ensures (∧N
i=1 x ∈ Xi → z ∈ Ri(m∗(x))

) ;
re turn z ;}

We then are able to verify the whole system integrating the
controller and the dynamics shown in the example code in
Appendix A with CBMC.

E. Measuring the Precision of AAPs

How close is the computed AAP M to the actual perception
system s ◦ h? As we discussed earlier, it is difficult, if not
impossible, to rigorously answer this question because the
perception system (and therefore the learning stage of M)
depends on the e in complex and unknown ways. There
are many options for measuring closeness that can factor in
information about the environmental parameters.

We propose a simple and fine-grained empirical measure of
precision. We fix a range of environmental parameter values
E. For each part Xi, we collect a testing set of pairs of
(z∗, z) by sampling across Xi × E using some distribution
D, where as before z∗ = m∗(x) is the ground truth and
z = h ◦ s(x, e) is the actual perception output. We denote a
pair (z∗, z) that satisfies z ∈ Ri(z∗) as a positive pair. Then,
the fraction of positive pairs gives us the empirical probability
of M(x) covering the vision-based perception system output
h ◦ s(x, e) in Xi. Formally, the empirical probability with
respect to D is defined as p̂i = 1

N

∑N
j=1 I

(
zj ∈ Ri(z∗j)

)
,

where (z∗1, z1), (z∗2, z2), · · · , (z∗N , zN) are i.i.d. samples from
distribution D, and I is the indicator function. In contrast,
the actual probability, which is more important, is defined as
pi = ED [I (z ∈ Ri(z∗))] . Going forward we call pi and p̂i
the precision and the empirical precision of M over Xi.

The following proposition immediately follows from Ho-
effding’s inequality, which bound the difference between the
actual and the empirical probabilities.

Proposition 4. For any δ ∈ (0, 1), with probability at least
1− δ, we have that

pi ≥ p̂i −
√
− ln δ

2N
.

It may be tempting to interpret this probability as a probabil-
ity of system-level safety, but without additional information
how D is related to the actual distributions over Xi and E, we
cannot make such conclusions.

In the following sections, we use a uniform distribution D
over simulated states and environments. Each of the heatmaps
shown in Fig. 6 illustrate the empirical precision p̂i of different
Xi of M . A darker green Xi means that a higher fraction of
outputs from the perception matches the provably safe AAP
M . We ensure that at least N = 300 images are collected for
each Xi. By Proposition 4, with probability at least 0.9 (i.e.,
δ = 0.1), we have that pi ≥ p̂i − 0.062.

V. CASE STUDY 1: VISION-BASED LANE TRACKING WITH
LANENET

We study the Polaris GEM e2 electric vehicle and its high-
fidelity Gazebo simulation [51] (Motivating example of Sec-
tion III-C). The perception module uses LaneNet [33] for lane
detection.5 We discuss the construction of the approximation

5We use https://github.com/MaybeShewill-CV/lanenet-lane-detection, one
of the most popular open source implementation of LaneNet on GitHub.

https://github.com/MaybeShewill-CV/lanenet-lane-detection

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 8

M in Section V-A, the interpretation of the precision heatmaps
in Section V-B, finally, in Section V-C we study behavior of
the closed-loop system where LaneNet (h◦s) is replaced by the
approximation (M). We aim to study the impact of partitions
{Xi}i≤N and the environment parameter distributions D.

A. Implementation Details in the Construction of AAPs

X0 =
{

(x, y, θ) | x = 0 ∧ |y| ≤ 1.2 ∧ |θ| ≤ π
12

}
is the ini-

tial set of states, and we recall the unsafe set is U = {(x, y, θ) |
|y| > 2.0}. Next, we discuss about the invariant I we will
use to prove U . A standard induction-based proof for control
systems is to define an error function (Lyapunov function) over
the perceived values, and then prove that the error is non-
increasing by induction. Formally, a tracking error function
is V : Z 7→ R≥0, with V (0z) = 0 and V (z) > 0 when
x 6= 0z. where 0z ∈ Z is the equilibrium. In this section, we
use the vector norm, i.e., V (d∗, ψ∗) = ‖(d∗, ψ∗)‖. Choices of
different tracking error functions are discussed in Appendix A.

The ground truth perceptual output of a state (x, y, θ) is
(d∗, ψ∗) = m∗(x, y, θ), and the tracking error is V (d∗, ψ∗).
The next state according to Equation (1) is (x′, y′, θ′) =
f ((x, y, θ), g(m∗(x, y, θ))). The next percept is then obtained
by (d∗′, ψ∗′) = m∗(x′, y′, θ′). We then define the invariant
of non-increasing error I ⊆ X as: I = {x | V (d∗′, ψ∗′) ≤
V (d∗, ψ∗)}. Detailed descriptions and values of parameters in
f and g and the definition of m∗ are in Appendix A.

To infer the AAP M , we consider that the partition of
the invariant is {Xi}i≤N with y within ±0.3W = ±1.2m
to ensure safety and heading angle θ within ±15◦, i.e.,⋃N
i=1 Xi =

{
(x, y, θ) | |y| ≤ 1.2 ∧ |θ| ≤ π

12

}
. Further, we

consider three different partitions6 N ∈ {8×5, 8×10, 8×20};
larger numbers partition more finely and refines coarser AAPs.

To prepare the training data for learning Ai and bi to
construct Ri, we use the Gazebo model in [51] and generate
camera images p labeled with their ground truth percepts z∗.
Each image is sampled from an uniform distribution D over
Xi × E, where E is defined by: (i) three types of roads with
two, four, and six lanes, (ii) two lighting conditions, day and
dawn. The ground truth percept z∗ = m∗(x) is calculated
using information from simulator.

For each part Xi, given Ai and bi learned from multi-
variate linear regression using the data. MinDist, imple-
mented in Gurobi [47], solves the following nonlinear op-
timization problem to find ri: We discuss the optimization
problem for a particular part Xi that covers y from 0.9
to 1.2 meters and θ from 12◦ to 15◦ as an example, i.e,
Xi =

{
(x, y, θ) | y ∈ [0.9, 1.2] ∧ θ ∈

[
π
15 ,

π
12

]}
.

min
(x,y,θ)∈Xi,(d,ψ)∈Z,(x′,y′θ′)∈X

‖(d, ψ)− (Ai ×m
∗
(x, y, θ) + bi)‖

subject to x
′

= x+ vf cos(θ + g(d, ψ))∆T,

y
′

= y + vf sin(θ + g(d, ψ))∆T,

θ
′

= θ + vf
sin(g(d, ψ))

L
∆T,

V (m
∗
(x
′
, y
′
, θ
′
)) > V (m

∗
(x, y, θ))

We composed the computed AAPs with the code for the
controller g and the dynamics f and successfully verified

6Here we do not partition along x because lanes are aligned with the x-axis,
and partitioning x-axis does not produce interesting results.

TABLE I
TIME USAGE FOR COMPUTING EACH OF THE SIX AAPS IN FIG. 6.

8× 5 8× 10 8× 20
Total Avg. Total Avg. Total Avg.

Three road types 271s 6.78s 617s 7.71s 1097s 6.85s
One road type 364s 9.10s 765s 9.57s 1351s 8.44s

the corresponding invariant with CBMC. In addition to be-
ing an extra check, this CBMC verification closes the gap
between the mathematical functions used in constructing the
verified AAP, and the corresponding C functions in code (E.g.,
arctan

(
K·d
vf

)
has to be implemented with atan2 in C library

to avoid division by zero).

B. Interpretation of the Precision of AAPs

We computed six AAPs resulting from three increasingly
finer partitions and two sets of testing environments. Our
method is able to compute AAPs efficiently even for finest
partition N = 8 × 20 as shown in Table I. Fig. 6 shows
the precision heatmaps for the six AAPs. A darker green
cell implies a higher empirical precision p̂i (and therefore,
a higher lower-bound of actual precision pi by Proposition 4),
i.e., the safe AAP approximates the perception system with
higher probability in Xi. First, we discuss the broad trends
and then delve into the details.

a) At equilibrium, AAP breaks but it does not matter:
All six heatmaps demonstrate a common trend where there is
a lump of white (low score) cells around the origin. There
are areas where either (1) the safe radius ri of Ri is too
small for M to include the outputs from h ◦ s or (2) the
center of Ri is unsafe. This phenomenon can be understood as
follows: First, the center (equilibrium) of the plot corresponds
to near zero error in deviation d and heading ψ. Consider
when a vehicle’s state has nearly 0 tracking error; the percept
must also approach the ground truth m∗(x) so that the next
state can maintain the 0 error. Recall that our AAP consists
of the mean Aim

∗(x) + bi and the safe radius ri. If the
mean Aim

∗(x)+bi already deviates from ground truth, it can
lead to control actions to always increase tracking error in the
next state. In this case, we cannot infer a safe region around
the bias, and M returns an empty set. The precision is 0 by
definition. In the other case, the mean is close to the ground
truth. The safe region to maintain nonincreasing error is still
small, and hence ri is almost 0. The precision will be very low
because the percept from the vision pipeline is unlikely to be
exactly equal to the ground truth. Alternatively, we can view
the overall system Ŝys(M) as a fixed-resolution quantized
control system. It is well-known that such a system cannot
achieve perfect asymptotic stability [52]. The feedback does
not have enough resolution to drive the state to the equilibrium,
and the error function V cannot be non-increasing around the
origin. We note that not proving safety around the origin is
less of a problem because the vehicle is safe—centered and
aligned with the lane.

b) Finer partitions improve precision: We observe that
finer partitions generate more precise approximations. With the
finest partition, several cells are over 90 percent. This could
be made higher with finer partitions. The reasons are twofold.
1) With a finer partition, regression can better fit a smaller

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

Fig. 6. Precision heatmaps of AAPs inferred for LaneNet with Stanley
controller. The partitions with N = 8×5, 8×10, and 8×20. The environment
parameter space with three road types (Top row) and only two-lane road
(Bottom row).

interval of the original perception function. 2) The radius ri
is minimized for all x ∈ Xi. If a subset Xj ⊂ Xi excludes the
worst state, the radius rj for Xj can be larger than ri.

c) Fewer environmental variations improve precision:
We generated two testing sets under different distributions
over the environment space including 1) the same uniform
distribution for the training set, and 2) an uniform distribution
over the subspace with only the two-lane road. Fig. 6 shows
that the colors become darker for the same cell locations.
The variance in the perceived values by the vision pipeline
reduces because of the fewer environmental variations. The
same radius can cover more samples in the testing set.

C. Closed-loop System with Approximate Perception Model

We test the performance of the worst AAP (with the N =
8×5 partition) by simulating it in the closed-loop lane-keeping
system in Gazebo (blue in Fig. 7). At each time step, the AAP
generates a set of possible perception values, and we randomly
pick a point from this set and feed that into the controller g to
close the loop. For comparison, we also run the original system
with LaneNet (orange) and with perfect ground-truth (green)
perception, starting from the exact same initial condition.

Fig. 7. V (d, ψ) (Left) computed using perception output, and V (d∗, ψ∗)
(Right) computed using ground truth.

We run 50 simulation starting randomly from 0.6 ≤ d ≤ 0.9
and |ψ| ≤ π

60 each with time horizon 3s. For all these runs, we
plot the mean and standard deviation of the perceived tracking
error (left) and the actual tracking error (right) in Fig. 7.
First, we observe that, as expected, the distribution of tracking
error using AAP and LaneNet are both biased compared to
the ground truth. Second, the perceived tracking error from
AAP is close to the tracking error of the actual system, and
the real tracking error between the two is even closer. These
experiments provide empirical evidence that the closed-loop
system with the AAP, namely Ŝys(M), closely approximates
the actual system Sys on average.

Fig. 8. Precision heatmaps of AAPs inferred for LaneNet with Stanley
controller using partitions of eight sublevel sets with L1(Left), L2(Mid),
L∞(Right).

Fig. 9. Precision heatmaps of AAPs inferred from the invariant barrier I =
{x | V (m∗(x)) ≤ 1.27} using grid based partitions with N = 8×5, 8×10,
and 8× 20.

D. Alternative Partitions with Sublevel Sets

The aforementioned grid based partitioning strategy has an
obvious scalability issue. That is, the number of grids can grow
exponentially against the dimension k of the percept domain
Z ⊆ Rk. We further consider a partitioning strategy combining
large grids with sublevel sets of the error tracking function
V (d, ψ) = ‖(d, ψ)‖ so that we can control the number of
levels independent of the dimension k. We use more general
norm functions ‖Cz‖p defined by the standard Lp norm
and an injective linear transformation matrix C for scaling
and rotation. Fig. 8 shows the precision heatmaps using the
partitions by four quadrants and eight sublevel sets, and each
heatmap from left to right is generated from L1, L2, and L∞

norms with proper scaling matrices. We can observe the exact
same trend of low precision scores around the equilibrium as
well as the upper right and lower left corners.

E. Safety with respect to Barrier Certificates

As discussed in Section V-B, the low precision score around
the equilibrium is because a quantized system cannot achieve
perfect asymptotic stability and maintain non-increasing track-
ing error. We therefore examine a relaxed invariant specifica-
tion using barrier certificates [42]. We use the invariant barrier
I = {x | V (m∗(x)) ≤ ρ} and manually derive the constant
ρ = 1.27 such that the ideal system are proven to stay within
the invariant barrier. Fig. 9 shows the precision heatmaps for
the AAP with respect to the invariant barrier. We can observe
the white cells around the equilibrium disappeared, but the
white upper right and lower left corners, which the truly unsafe
states are, remains.

VI. CASE STUDY 2: CORN ROW FOLLOWING AGBOT

Our second case study is the visual navigation system,
named CropFollow, for under-canopy agricultural robots (Ag-
Bot) developed in [53]. The system is responsible for avoiding
collisions to the row boundaries when the vehicle traverses the
space between two rows of crops. The system follows the same
architecture in Fig. 2 with very similar interfacing variables:

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 10

Fig. 10. Real and simulated camera images for corn row following for
agricultural robots.

The vehicle state x consists of the 2D position x and y and
the heading θ. The sensor captures the image p in front of the
vehicle with a camera (Fig. 10). The percept z ∈ Z composed
of the heading difference ψ and cross track distance d to an
imaginary center line of two rows.

However, all components in CropFollow are very different
from the LTC system in GEM. The vehicle dynamics is a
kinematic differential model of a skid-steering mobile robot in
contrast to the bicycle model. The modified Stanley controller
takes the percept and steers the robot to reduce the lateral
deviation through the angular velocity ω instead of the steering
angle. The perception component perceives the relative posi-
tions of the rows to the vehicle under largely varying crop field
environments, such as different seasons of the crops, different
plant types, etc. This is achieved by applying a ResNet-18
CNN on the camera image detailed in [53]. As a result, the
error function for the system also differs.

For the farm robots, we wish to avoid two undesirable
outcomes: 1) if |y| > 0.5W = 0.38 meters, the vehicle will
hit the corn, and 2) if |θ| > 30◦, the neural network output
becomes highly inaccurate and recovery may be impossible.
That is, U = {(x, y, θ) | |y| > 0.38 ∧ |θ| > π

6 }. We use
the error function V (d, ψ) = |ψ + arctan(K·dvf)| from [41]
to specify the invariant I. The definition of the dynamics and
controller, the partitions of states, environments, and constants
for the dynamics, are provided in Appendix B.

To cover the invariant and disjoint from the unsafe set U ,
we choose the whole space

⋃N
i=1 Xi covers ±0.3W = ±0.228

meters in y and ±30◦ in θ. We consider three different
partitions N ∈ {5 × 5, 10 × 10, 20 × 20}. We follow the
same procedure to sample images and derive the safe neighbor
function Ri for Xi. For this case study, the environment
parameter space E is defined by five different plant fields,
including three stages of corns (baby, small, and adult) and
two stages of tobaccos (early and late). We use the uniform
distribution over the state space Xi and the five environments
for both the training testing set.

In Fig. 11, we observe almost identical broad trends includ-
ing the white cells around equilibrium (the band from upper
left to lower right), the white spots in the upper right and
lower left corners close to the violation of invariant, and higher
precision score with finer partitions. This case study reaffirms
the validity of our interpretation of the precision heatmap in
Section V. It also showcases that our analysis can be applied
to different vision-based control systems.

VII. DISCUSSION AND FUTURE DIRECTIONS

Safety assurance of autonomous systems that use machine
learning models for perception is an important challenge. We
presented an approach creating approximate abstractions for
perception (AAP) that are safe by construction. The approach

Fig. 11. Precision heatmap of AAPs inferred for CropFollow using N ∈
{5× 5, 10× 10, 20× 20}.

learns piece-wise affine set-valued AAPs of the perception
system from data. Viewing AAPs along the triple axes of
safety, intelligibility, and precision may give a productive
perspective for tackling the problems of safety assurance of
autonomous systems.

Within the space of intelligible AAPs, we have explored one
corner with piece-wise affine models. Our piece-wise affine
AAPs use uniform rectangular partitions, and the size of the
partitions have significant impact on improving precision. The
results suggest that non-uniform or adaptive partitioning (e.g.,
finer partitions nearer to the equilibrium) would yield more
precise approximations. Exploration of other structures such
as decision trees, polynomial models, and space partitions,
would be fruitful from the point of achieving precision without
making the partition size too big.

As expected, the safety requirement and its verification
method (e.g., invariants and Lyapunov functions) significantly
impact the precision of the constructed approximation model.
The precision maps shed light on parts of the state space
and environment where the actual vision-based perception
system is most fragile and is likely to violate requirements.
Such quantitative insights can inform design decisions for the
perception system, the control system, and the definition of
the system-level operating design domains (ODDs).

Finally, we chose to use discrete time models and used
CBMC for verifying the closed system with the AAP. Extend-
ing the approach to continuous and hybrid would be interesting
and require nontrivial extensions of existing verification tools.

VIII. ACKNOWLEDGMENTS

The authors would like to acknowledge the construc-
tive feedback from the anonymous reviewers. We thank the
help from Hang Cui, Arun Narenthiran, Prof. Katie Driggs-
Campbell and Prof. Girish Chowdhary of the University of
Illinois at Urbana-Champaign for the simulator of the GEM
vehicle and AgBot. The work benefited from many insightful
discussions with Aaron Mayne, Michael R. Abraham, Italo
Romani De Oliveira, and Huafeng Yu of the Boeing Company.
The researchers were supported by research grants from the
National Science Foundation of the United States (Award
numbers 2008883), the USDA National Institute of Food and
Agriculture (USDA/NIFA) through the National Robotics Ini-
tiative (NIFA#2021-67021-33449), and the Boeing Company.

REFERENCES

[1] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
in Proc. 29th Int. Conf. CAV, 2017, pp. 97–117.

[2] L. Pulina and A. Tacchella, “Never: A tool for artificial neural networks
verification,” Annals of Mathematics and Artificial Intelligence, vol. 62,
no. 3–4, pp. 403––425, Jul. 2011.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 11

[3] H.-D. Tran, X. Yang, D. Manzanas Lopez, P. Musau, L. V. Nguyen,
W. Xiang, S. Bak, and T. T. Johnson, “Nnv: The neural network
verification tool for deep neural networks and learning-enabled cyber-
physical systems,” in Proc. 32nd Int. Conf. CAV, 2020, pp. 3–17.

[4] S. Dutta, X. Chen, S. Jha, S. Sankaranarayanan, and A. Tiwari, “Sherlock
- a tool for verification of neural network feedback systems: Demo
abstract,” in Proc. 22nd ACM Int. Conf. HSCC, 2019, pp. 262––263.

[5] R. Ivanov, J. Weimer, R. Alur, G. J. Pappas, and I. Lee, “Verisig:
Verifying safety properties of hybrid systems with neural network
controllers,” in Proc. 22nd ACM Int. Conf. HSCC, 2019, pp. 169––178.

[6] S. Bak, C. Liu, and T. Johnson, “The second international verification of
neural networks competition (vnn-comp 2021): Summary and results,”
2021. [Online]. Available: https://arxiv.org/abs/2109.00498

[7] E. A. S. Agency, “Easa concept paper: First usable guidance for
level 1 machine learning applications,” 2021. [Online]. Available:
https://www.easa.europa.eu/sites/default/files/dfu/easa concept paper
first usable guidance for level 1 machine learning applications -
proposed issue 01 1.pdf

[8] P. Koopman, U. Ferrell, F. Fratrik, and M. Wagner, “A safety standard
approach for fully autonomous vehicles,” in Proc. 38th Int. Conf.
SAFECOMP, 2019, pp. 326–332.

[9] T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim, H. Ravanbakhsh,
M. Vazquez-Chanlatte, and S. A. Seshia, “Verifai: A toolkit for the
formal design and analysis of artificial intelligence-based systems,” in
Proc. 31st Int. Conf. CAV, 2019, pp. 432–442.

[10] S. Ghosh, Y. V. Pant, H. Ravanbakhsh, and S. A. Seshia,
“Counterexample-guided synthesis of perception models and control,”
in 2021 American Control Conf. (ACC). IEEE, 2021, pp. 3447–3454.

[11] S. M. Katz, A. L. Corso, C. A. Strong, and M. J. Kochenderfer,
“Verification of image-based neural network controllers using generative
models,” in Proc. 40th IEEE/AIAA DASC, 2021, pp. 1–10.

[12] S. Dean, N. Matni, B. Recht, and V. Ye, “Robust guarantees for
perception-based control,” in Proc. 2nd Conf. L4DC, vol. 120, 2020,
pp. 350–360.

[13] U. Santa Cruz and Y. Shoukry, “NNLander-VeriF: A Neural Network
Formal Verification Framework for Vision-Based Autonomous Aircraft
Landing,” in NASA Formal Methods, J. V. Deshmukh, K. Havelund,
and I. Perez, Eds. Cham: Springer International Publishing, 2022, pp.
213–230.

[14] K. Joshi, C. Hsieh, S. Mitra, and S. Misailovic, “Estimating Uncertainty
of Autonomous Vehicle Systems with Generalized Polynomial Chaos,”
2022. [Online]. Available: https://arxiv.org/abs/2208.02232

[15] S. A. Seshia, A. Desai, T. Dreossi, D. J. Fremont, S. Ghosh, E. Kim,
S. Shivakumar, M. Vazquez-Chanlatte, and X. Yue, “Formal specification
for deep neural networks,” in Proc. 16th Int. Symp. ATVA, 2018, pp. 20–
34.

[16] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” 2014.

[17] J. Lu, H. Sibai, E. Fabry, and D. Forsyth, “No need to worry about
adversarial examples in object detection in autonomous vehicles,”
https://arxiv.org/abs/1707.03501, 2017.

[18] A. Adadi and M. Berrada, “Peeking inside the black-box: A survey on
explainable artificial intelligence (xai),” IEEE Access, vol. 6, pp. 52 138–
52 160, 2018.

[19] C. Baier, C. Dubslaff, F. Funke, S. Jantsch, R. Majumdar, J. Piribauer,
and R. Ziemek, “From verification to causality-based explications,”
2021. [Online]. Available: https://arxiv.org/abs/2105.09533

[20] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ANSI-C
programs,” in Proc. 10th Int. Conf. TACAS, vol. 2988, 2004, pp. 168–
176.

[21] G. Brat, J. A. Navas, N. Shi, and A. Venet, “Ikos: A framework for
static analysis based on abstract interpretation,” in Proc. 12th Int. Conf.
SEFM, 2014, pp. 271–277.

[22] P. Koopman and F. Fratrik, “How many operational design domains,
objects, and events?” in SafeAI@ AAAI, 2019.

[23] C. S. Păsăreanu, D. Gopinath, and H. Yu, Compositional Verification for
Autonomous Systems with Deep Learning Components. Cham: Springer
International Publishing, 2019, pp. 187–197.

[24] R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J. Pappas, and
I. Lee, “Verifying the safety of autonomous systems with neural network
controllers,” ACM Trans. Embed. Comput. Syst., vol. 20, no. 1, Dec.
2020.

[25] K. D. Julian and M. J. Kochenderfer, “Guaranteeing safety for neural
network-based aircraft collision avoidance systems,” Proc. 38th IEEE/A-
IAA DASC, pp. 1–10, 2019.

[26] ——, “Reachability analysis for neural network aircraft collision avoid-
ance systems,” J. Guidance, Control, and Dynamics, vol. 44, no. 6, pp.
1132–1142, 2021.

[27] S. Dutta, X. Chen, and S. Sankaranarayanan, “Reachability analysis for
neural feedback systems using regressive polynomial rule inference,” in
Proc. 22nd ACM Int. Conf. HSCC, 2019, pp. 157—-168.

[28] J. Fan, C. Huang, X. Chen, W. Li, and Q. Zhu, “Reachnn*: A tool
for reachability analysis of neural-network controlled systems,” in Au-
tomated Technology for Verification and Analysis, 2020, pp. 537–542.

[29] H. Hu, M. Fazlyab, M. Morari, and G. J. Pappas, “Reach-sdp: Reachabil-
ity analysis of closed-loop systems with neural network controllers via
semidefinite programming,” in 59th IEEE Conf. Decision and Control,,
2020, pp. 5929–5934.

[30] M. Everett, G. Habibi, C. Sun, and J. P. How, “Reachability Analysis
of Neural Feedback Loops,” IEEE Access, vol. 9, pp. 163 938–163 953,
2021.

[31] T. P. Gros, H. Hermanns, J. Hoffmann, M. Klauck, and M. Steinmetz,
“Deep statistical model checking,” in Formal Techniques for Distributed
Objects, Components, and Systems, 2020.

[32] R. Ivanov, K. Jothimurugan, S. Hsu, S. Vaidya, R. Alur, and O. Bastani,
“Compositional learning and verification of neural network controllers,”
ACM Trans. Embed. Comput. Syst., vol. 20, no. 5s, Sep. 2021.

[33] D. Neven, B. D. Brabandere, S. Georgoulis, M. Proesmans, and L. V.
Gool, “Towards end-to-end lane detection: an instance segmentation
approach,” in 2018 IEEE Intell. Veh. Symp., 2018, pp. 286–291.

[34] K. Muvva, J. M. Bradley, M. Wolf, and T. Johnson, “Assuring learning-
enabled components in small unmanned aircraft systems,” in AIAA
Scitech 2021 Forum, 2021.

[35] C. Molnar, G. Casalicchio, and B. Bischl, “Interpretable machine learn-
ing – a brief history, state-of-the-art and challenges,” in ECML PKDD
2020 Workshops, 2020, pp. 417–431.

[36] F. Bodria, F. Giannotti, R. Guidotti, F. Naretto, D. Pedreschi, and
S. Rinzivillo, “Benchmarking and survey of explanation methods for
black box models,” 2021.

[37] D. W. Apley and J. Zhu, “Visualizing the effects of predictor variables
in black box supervised learning models,” 2019.

[38] D. Janzing, L. Minorics, and P. Blöbaum, “Feature relevance quantifi-
cation in explainable AI: A causal problem,” in Proc. 23rd Int. Conf.
Artificial Intelligence and Statistics, vol. 108, 2020, pp. 2907–2916.

[39] T. Laugel, M. Lesot, C. Marsala, X. Renard, and M. Detyniecki,
“The dangers of post-hoc interpretability: Unjustified counterfactual
explanations,” in Proc. 28th Int. Joint Conf. Artificial Intelligence, IJCAI
2019, 2019, pp. 2801–2807.

[40] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Trans. Intell. Veh., vol. 1, no. 1, pp. 33–55, 2016.

[41] G. M. Hoffmann, C. J. Tomlin, M. Montemerlo, and S. Thrun, “Au-
tonomous automobile trajectory tracking for off-road driving: Controller
design, experimental validation and racing,” in 2007 American Control
Conference, 2007, pp. 2296–2301.

[42] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using
barrier certificates,” in Proc. 7th Int. Workshop HSCC, 2004, pp. 477–
492.

[43] S. Sankaranarayanan, H. B. Sipma, and Z. Manna, “Constructing invari-
ants for hybrid systems,” in Proc. 7th Int. Workshop HSCC, 2004, pp.
539–554.

[44] A. Platzer and E. M. Clarke, “Computing differential invariants of hybrid
systems as fixedpoints,” in Proc. 20th Int. Conf. CAV, 2008, p. 176–189.

[45] A. Platzer, Logical Analysis of Hybrid Systems: Proving Theorems for
Complex Dynamics, 1st ed. Springer Publishing Company, Incorpo-
rated, 2010.

[46] S. Mitra, Verifying Cyber-Physical Systems: A Path to Safe Autonomy.
Cambridge, MA, USA: MIT Press, 2021.

[47] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2020.
[Online]. Available: http://www.gurobi.com

[48] M. Fähndrich, “Static verification for code contracts,” in Static Analysis,
2010, pp. 2–5.

[49] G. T. Leavens, A. L. Baker, and C. Ruby, “Preliminary design of jml:
A behavioral interface specification language for java,” SIGSOFT Softw.
Eng. Notes, vol. 31, no. 3, pp. 1–38, May 2006.

[50] M. Barnett, K. R. M. Leino, and W. Schulte, “The spec# programming
system: An overview,” in Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices, 2005, pp. 49–69.

[51] P. Du, Z. Huang, T. Liu, T. Ji, K. Xu, Q. Gao, H. Sibai, K. Driggs-
Campbell, and S. Mitra, “Online monitoring for safe pedestrian-vehicle
interactions,” in 2020 IEEE 23rd Int. Conf. Intell. Transportation Sys-
tems (ITSC), 2020, pp. 1–8.

https://arxiv.org/abs/2109.00498
https://www.easa.europa.eu/sites/default/files/dfu/easa_concept_paper_first_usable_guidance_for_level_1_machine_learning_applications_-_proposed_issue_01_1.pdf
https://www.easa.europa.eu/sites/default/files/dfu/easa_concept_paper_first_usable_guidance_for_level_1_machine_learning_applications_-_proposed_issue_01_1.pdf
https://www.easa.europa.eu/sites/default/files/dfu/easa_concept_paper_first_usable_guidance_for_level_1_machine_learning_applications_-_proposed_issue_01_1.pdf
https://arxiv.org/abs/2208.02232
https://arxiv.org/abs/2105.09533
http://www.gurobi.com

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 12

[52] R. W. Brockett and D. Liberzon, “Quantized feedback stabilization of
linear systems,” IEEE Trans. Autom. Control, vol. 45, no. 7, pp. 1279–
1289, 2000.

[53] A. N. Sivakumar, S. Modi, M. V. Gasparino, C. Ellis, A. E. Baquero
Velasquez, G. Chowdhary, and S. Gupta, “Learned Visual Navigation
for Under-Canopy Agricultural Robots,” in Proc. Robotics: Science and
Systems, Virtual, July 2021.

APPENDIX A
STANLEY CONTROLLER FOR GEM CAR

In this Appendix, we provide the details of the vehicle
dynamics and the proof of non-increasing cross track distance
for the GEM car discussed earlier in Section V.

TABLE II
CONSTANTS FOR POLARIS GEM E2 ELECTRIC CART CASE STUDY

Symbol Value Description
W 4.0 Width of the lane (m)
vf 2.8 Constant forward velocity (m/s)
L 1.75 Wheel base (m)
∆T 0.1 Time discretization (s)
δmax 0.61 Steering angle limit (rad)
K 0.45 Stanley controller gain

a) Non-increasing cross track distance: Following the
proof in [41], when |ψ + arctan(K·dvf)| < δmax,

ḋ = −vf · sin(arctan(
K · d
vf

)) =
−K · d√

1 + (K·d
vf

)2

Note that ‖d‖ converges to zero because − K·d√
1+(K·dvf

)2
is

always the opposite sign of d. We can find the Lyapunov
function for nominal region V2(d, ψ) = ‖d‖. This is however
not entirely true in discrete dynamics because the value ‖d‖
can cross zero and become larger in a discrete transition.

b) Non-increasing vector norm value: When in the nom-
inal region |ψ + arctan(K·dvf)| < δmax,

ḋ = −
K · d√

1 + (K·d
vf

)2
; ψ̇ = −

vf · sin(ψ + arctan(K·d
vf

))

L

The sign of ψ̇ is opposite of (ψ + arctan(K·dvf)), so ψ

approaches arctan(K·dvf). Further, arctan(K·dvf) converges to
zero because d converges to zero as proven above. Therefore,
the origin is the equilibrium, and L2 norm is non-increasing.

A. C Code Encoding for CBMC

The controllers in the paper are represented by a mathe-
matical function g . This function is used in the algorithms
for computing the safe approximate abstractions. However,
the actual implementation of g is in code, and the two may
have subtle discrepancies. To bridge this gap, we verify the
controller code composed with the computed approximate
perception model M and the dynamics using CBMC.
U g (Z z) { / / S t a n l e y c o n t r o l l e r example code
U δ = z.ψ + a t a n 2 (K*z.d , vf) ;
i f (δ >= δmax)

δ = δmax ;
e l s e i f (δ <= −δmax)

δ = −δmax ;
re turn δ ; }

X f (X x , U δ) { / / B i c y c l e model example code
X new x ;
new x.x = x.x + vf * cos (x.θ+δ)*∆T ;
new x.y = x.y + vf * s i n (x.θ+δ)*∆T ;
new x.θ = x.θ + vf * s i n (δ) /L*∆T ;
re turn new x ; }

TABLE III
DEFINITIONS OF TRACKING ERROR FUNCTIONS.

Tracking error function Description
V1(d, ψ) = |ψ + arctan(K·d

vf
)| Combined error in [41]

V2(d, ψ) = |d| Distance error only

Fig. 12. Precision heatmaps for LaneNet with Stanley controller with only
two-lane road for error functions V1 (Top) vs V2 (Bottom).

B. Variations with Different Safety Requirements

We consider other invariants which uses different tracking
error functions listed in Table III. V1 is the original function
in [41] to combine the heading and lane deviation as a single
tracking error. V2 considers only lane deviation error (d). Both
can be used to prove the same unsafe set U . Three heatmaps
for each tracking error function are in Fig. 12 for the same
three partitions and with the testing set with two-lane road.

a) Weak invariants can break safe AAP: Along the
diagonal line (through the origin) we have states where the
vehicle’s deviation from the lane center d and the heading ψ
are in opposing directions. By observing V1 from Table III,
we know ψ and d are of opposite signs at the equilibrium
points V1(d, ψ). Hence, the band of white cells goes from
the second to the fourth quadrant; the tracking error of these
states cannot be non-increasing in one step as required by I.
Similarly, we see a white band surrounding the line d = 0 for
V2. This validates our explanation that the AAP breaks due to
the stringent requirement of non-increasing error.

APPENDIX B
MODIFIED STANLEY CONTROLLER WITH AGBOT

TABLE IV
CONSTANTS USED IN THE AGRICULTURAL ROBOT CASE STUDY.

Symbol Value Description
W 0.76 Width of the corn row (m)
vf 1.0 Constant forward velocity (m/s)
∆T 0.05 Time discretization (s)
ωmax 0.5 Angular velocity limit (rad/s)
K 0.1 Stanley controller gain

The dynamics f (x,u) is:
xt+1 = xt + vf cos(θt)∆T

yt+1 = yt + vf sin(θt)∆T

θt+1 = θt + ω∆T

The controller g is given as:

g(d, ψ) =


ψ+arctan

(
K·d
vf

)
∆T , if

∣∣∣ψ + arctan
(
K·d
vf

)∣∣∣ < ωmax ·∆T

ωmax, if ψ + arctan
(
K·d
vf

)
≥ ωmax ·∆T

−ωmax, if ψ + arctan
(
K·d
vf

)
≤ −ωmax ·∆T

	Introduction
	Related Works
	System-level Safety Assurance
	System Description
	Assurances for the Closed-loop System
	An Example: Vision-based Lane Keeping

	Safe Approximated Abstract Perception
	Approximate Abstract Perception in Closed-loop
	Learning Piece-wise Approximations from Data
	Constructing Safe Approximations of Perception
	Verifying with AAPs: Theory and Code
	Measuring the Precision of AAPs

	Case study 1: Vision-based Lane Tracking with LaneNet
	Implementation Details in the Construction of AAPs
	Interpretation of the Precision of AAPs
	Closed-loop System with Approximate Perception Model
	Alternative Partitions with Sublevel Sets
	Safety with respect to Barrier Certificates

	Case study 2: Corn Row Following AgBot
	Discussion and Future Directions
	Acknowledgments
	References
	Appendix A: Stanley Controller for GEM Car
	C Code Encoding for CBMC
	Variations with Different Safety Requirements

	Appendix B: Modified Stanley Controller with AgBot

