
FastFlip: Compositional SDCResiliency Analysis
Keyur Joshi

University of Illinois

Urbana-Champaign, USA

kpjoshi2@illinois.edu

Rahul Singh

University of Illinois

Urbana-Champaign, USA

rahuls10@illinois.edu

Tommaso Bassetto

University of Illinois

Urbana-Champaign, USA

tommaso3@illinois.edu

Sarita Adve

University of Illinois

Urbana-Champaign, USA

sadve@illinois.edu

DarkoMarinov

University of Illinois

Urbana-Champaign, USA

marinov@illinois.edu

Sasa Misailovic

University of Illinois

Urbana-Champaign, USA

misailo@illinois.edu

Abstract
To efficiently harden programs susceptible to Silent Data Cor-

ruptions (SDCs), developers need to invoke error injection

analyses to find particularly vulnerable instructions and then

selectively protect them using appropriate compiler-level

SDC detection mechanisms. However, these error injection

analyses are both expensive and monolithic: they must be

run from scratch after even small changes to the code, such

as optimizations or bug fixes. This high recurring cost keeps

such software-directed resiliency analyses out of standard

software engineering practices such as regression testing.

We present FastFlip, the first approach tailored to seam-

lessly incorporate resiliency analysis within the iterative soft-

ware development workflow. FastFlip combines empirical

error injection and symbolic SDC propagation analyses to

enable fast andcompositional error injectionanalysis of evolv-

ing programs. When developers modify a program, FastFlip

often has to re-analyze only the modified program sections,

which can save a significant amount of analysis time.

We evaluated FastFlip with five benchmark programs. In

our experiments, for each benchmark, we analyzed the orig-

inal version plus twomodified versions. The compositional

nature of FastFlip speeds up the analysis of the incrementally

modified versions by 3.2× (geomean) and up to 17.2×. The
results demonstrate that FastFlip can effectively select a set

of instructions to protect against SDCs that minimizes the

runtime protection cost while protecting against a developer-

specified target fraction of all tested SDC-causing errors.

CCS Concepts: • Software and its engineering→ Error
handling and recovery; Software evolution; Empirical soft-
ware validation.

Keywords: Error Detection, Static Analysis, Dynamic Anal-

ysis, Resiliency, Optimization.

Thiswork is licensedunderaCreativeCommonsAttribution4.0 International

License.

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1275-3/25/03

https://doi.org/10.1145/3696443.3708938

ACMReference Format:
Keyur Joshi, Rahul Singh, Tommaso Bassetto, Sarita Adve, Darko

Marinov, and SasaMisailovic. 2025. FastFlip: Compositional SDC Re-

siliency Analysis. In Proceedings of the 23rd ACM/IEEE International
Symposium on Code Generation and Optimization (CGO ’25), March
01–05, 2025, Las Vegas, NV, USA.ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3696443.3708938

1 Introduction
Processors are becoming increasingly susceptible to tran-

sient errors [6, 68]. The presence of Silent Data Corruptions

(SDCs) in program outputs caused by such hardware-level

errors during execution is difficult to detect. Software-level

SDC detection techniques, such as instruction replication

(e.g., [17, 48, 56]) are particularly attractive for protecting

against SDCs, as they can be used on existing hardware. How-

ever, replicating all instructions leads to an unacceptably high

runtime overhead. To reduce runtime overhead to sustainable

amounts, we can only selectively duplicate those instructions

where errors are most likely to cause SDCs (e.g., [20, 32, 63]).

We can find vulnerable instructions using instruction-level
error injection analysis, which injects errors one at a time into

the dynamic instructions of a program during its execution

and records the effect on the output. For targeted protection,

these analyses must provide per-instruction information on

how errors in that instruction affect the output (e.g., [24, 67]),

as opposed to just using sampling to provide overall statistical

estimates of the program’s vulnerability (e.g., [43, 53]). Such

instruction-level resiliency analyses are time-consuming, re-

quiring thousands of core-hours even for small programs.

This high analysis cost impedes the use of precise resiliency

analyses in the iterative software development cycle, inwhich

programmers regularly fix bugs, add features, and optimize

their code. Eachmodification is frequently integrated into the

code base, automatically compiled, and tested to ensure the

absence of bugs [69]. However, all previously proposed error

injection analyses (e.g., [11, 12, 18, 30, 31, 39–41, 43, 54, 59, 66,

67]) must be re-executed on the full modified program after

any (even minimal) code change, rendering them impractical.

Instead, we advocate for a compositional and incremental
approach that partially reuses the results of error injection

analyses from an old program version to reduce the analysis

https://orcid.org/0000-0002-5794-6257
https://orcid.org/0000-0002-3868-3906
https://orcid.org/0009-0008-9528-8241
https://orcid.org/0000-0002-3403-5119
https://orcid.org/0000-0001-5023-3492
https://orcid.org/0000-0001-7319-8845
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3696443.3708938
https://doi.org/10.1145/3696443.3708938

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Keyur Joshi, Rahul Singh, Tommaso Bassetto, Sarita Adve, DarkoMarinov, and SasaMisailovic

cost as the program evolves. We can divide the program into

sections (e.g., function calls, code blocks, or loop nests), in-

ject errors into each section separately, and combine the per-

section results to get the program’s SDC vulnerability results.

When developersmodify the program,we re-analyze only the

sections impacted by the change and reuse the results for the

sections unaffected by the modification. This is the first step

toward creating a software engineering discipline for hard-

ware errors and resilience alongside the current,well-trodden,

software engineering discipline for software bugs, ensuring

that hardening and functional correctness are both preserved.

Designing such an approach is challenging! The approach
must propagate SDCs that occur within the output of one

section through downstream sections to determine the SDCs

in the final output. Similarly, errors in one section can corrupt

data that will be used only by subsequent sections, thus caus-

ing unexpected side effects without generating SDCs in the

output of the current section. Finally, the approach should be

general and support various existing resiliency analyses.

Ourwork.Wepresent FastFlip, the first systematic approach

for compositional and incremental error injection analysis of

programs. FastFlip’s theoretical foundation describes the con-

ditions in which combining existing instruction-level error

injection analyses and symbolic error propagation analyses

is possible, and its practical framework specifies how to com-

pute the impact of injected errors on a program’s outputs.

This allows FastFlip to utilize current and future advances in

both sub-analyses to efficiently find vulnerable instructions.

WhenFastFlipfirst analyzes aprogram, FastFlip 1)performs
an error injection analysis of each program section to find er-

rors that cause SDCs, 2) uses an SDC propagation analysis to
determine how SDCs propagate from one section to another

to affect thefinal output, 3) records the analysis results for reuse
on future program versions, and 4) uses the analysis results
to select a set of static instructions to protect that minimizes

runtime protection cost for a given target protection against

SDC-causing errors. FastFlip also correctly accounts for side

effects that only occur due to errors and can adaptively adjust

its results to meet SDC protection targets. When developers

modify a program, FastFlip can reuse large portions of its

analysis results: FastFlip only needs to rerun the expensive

error injection analysis on the modified program sections

and those downstream sections that receive a different input

due to modified program semantics. By reusing the analysis

results of other sections, FastFlip can save significant time.

For our evaluation, we instantiate FastFlip with 1) the Ap-

proxilyzer [67] per-instruction error injection analysis on top

of an architectural simulator [66] and 2) the Chisel [47] SDC

propagation analysis. We compare FastFlip against a base-

line Approxilyzer-only error injection analysis that treats

the entire program as a single section. For comparison, we

use two key metrics also used by previous work [23, 48, 56]

on SDC protection through selective instruction duplication:

1) the value of protection (i.e., the coverage / fraction of SDC-
causing errors detected), and 2) the dynamic cost of protection
(e.g., its runtime overhead).We analyze each benchmark both

before and after making two modifications. FastFlip provides

a 3.2× speedup (geomean) over Approxilyzerwhen analyzing

the modified programs, with minimal loss in protection value

or increase in cost.

Contributions. This paper makes several contributions:

• FastFlip: We present FastFlip, the first approach for fast,

compositional SDC error injection analysis of programs.

FastFlip uses error injection and SDC propagation analyses

to separately analyze program sections and then combine

the analysis results. FastFlip then selects a set of instruc-

tions to protect to detect a target fraction of SDC-causing

errors while minimizing the runtime cost of protection.

• Instantiation:We realize FastFlip using the Approxilyzer

error injection analysis and the Chisel SDC propagation

analysis. This novel combination allows FastFlip to analyze

the effect of SDC-causing bitflips in architectural registers

within the dynamic instructions of a program.

• Evaluation:We analyze five benchmarks with FastFlip, plus

two modifications per benchmark (i.e., 15 versions total).

FastFlip can analyze the modified benchmarks on average

3.2× faster and up to 17.2× faster than the Approxilyzer-

onlyapproach. Forall benchmarkversions, FastFlip success-

fully protects against the target fraction of SDC-causing

errors for a similar cost as the Approxilyzer-only approach.

2 Background
2.1 Error Injection Analyses
Error injection analyses first find potential error sites at var-

ious points in an error-free execution of the program. These

error sites can be bits in various registers, caches, etc. The anal-
ysis injects errors intoeachsiteoneat a timeand thenexecutes

the rest of the program to record the effect of the error on the

final output. Such analyses operate at different levels of ab-

straction, including hardware [18], assembly [67], and IR [11].

An error can have various effects on the program output:

• The error ismasked, i.e., it does not affect the output.
• The error causes a crash or other unrecoverable errorwhich
abnormally terminates the program.

• The error greatly extends the program runtime (e.g., by

creating a long loop), causing a timeout.
• The error causes a detectable output change (e.g., by pro-
ducing an incorrectly formatted output).

• The error causes an undetectable output change, known as
a Silent Data Corruption (SDC).

The analysis result maps each error site to the outcome of an

error at that site. Crashes, timeouts, and detectable output

changes canbehandled through relatively lightweightmecha-

nisms such as checkpoints. SDC outcomes are more insidious

and require more expensive methods such as task or instruc-

tion duplication for detection. However, many applications

FastFlip: Compositional SDC Resiliency Analysis CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

can tolerate small errors in their output, such as media/signal

processing and data science [61]. For such applications, itmay

not be necessary to protect instructions where errors mostly

cause acceptably small SDCs (SDC-Good) and just a few un-

acceptably large SDCs (SDC-Bad). Thus, similar to Approxi-

lyzer [67] we further classify SDCs as SDC-Good or SDC-Bad

based on a developer-defined and application-specific thresh-

old 𝜀. For applications that do not tolerate any SDC, 𝜀 is 0.

Analyses such as Approxilyzer aim to provide information

on the outcome of errors at all error sites of a particular class
within a program’s execution on a specific input (e.g., [24, 67]).

These instruction-level analyses are slower than analyses that

randomly sample error sites [4, 52], but in return they can

precisely identify vulnerable instructions that can thenbepro-

tected/hardened during compilation [2, 17, 20, 29, 48, 56, 72].

2.2 SDC Propagation Analyses
SDC propagation analyses determine how SDCs within a

program’s input, or those introduced during execution, are

propagated and amplified by the program up to the output.

An SDC boundΔ(𝑜) ≤ 𝑓 (Δ(𝑖)) states that the SDCΔ(𝑜) in the
output 𝑜 of a code section is at most a function 𝑓 of the SDC

Δ(𝑖) in the input 𝑖 . Many SDC propagation analyses, such as

Chisel [47], conservatively and soundly account for control

flow divergence caused by SDCs and its impact on the output.

Sensitivity analysis [10] is a component of SDCpropagation

analyses that determines howsections of the programamplify

SDCs present within their inputs. In particular, local sensitiv-
ity analysis focuses on determining the effect of perturbations

around a single input value. This analysis varies an input 𝑥0

to a program section 𝑠 by various amounts 𝜑 up to 𝜑max. The

analysis then executes 𝑠 to calculate the output perturbation

|𝑠 (𝑥0+𝜑)−𝑠 (𝑥0) | and calculates the SDC amplification factor

𝐾 , which is the Lipschitz constant [13] for 𝑠 at 𝑥0:

𝐾 = max

𝜑≤𝜑max

|𝑠 (𝑥0+𝜑)−𝑠 (𝑥0) |
𝜑

(1)

Wecanapproximate𝐾 by sampling a set of𝜑 values [70] or cal-

culate its upper bound using static analysis (e.g., [13, 16, 35]).

3 Example
Lower-Upper Decomposition (LUD) is a key matrix opera-

tion used in many applications. The blocked LUD algorithm

consists of an outer loop with four sections that process var-

ious subsets of matrix blocks. We demonstrate FastFlip on

the blocked LUD benchmark from the Splash-3 suite [57] for

an example 16×16 input matrix with an 8×8 block size. Al-

gorithm 1 shows the pseudocode of blocked LUD. In each

iteration 𝑘 of the loop, the loop body executes four sections

𝑠𝑘1,...,𝑠𝑘4 in sequence. Each section updates only one block.

Hardware errors may occasionally occur in computations

using this operation. Although memory can be protected us-

ing ECC, the data currently processed by the CPU is more

vulnerable. If a bitflip causes an SDC, the corruption may not

Algorithm 1 Blocked LUD pseudocode.

Input blks: matrix blocks; 𝑛: blocks per dimension

Modifies blks
1: for 𝑘←0 to 𝑛−1 do
2: lu0(blks[𝑘,𝑘]) ← section 𝑠𝑘1

3: for 𝑖←𝑘+1 to 𝑛−1 do
4: bdiv(blks[𝑘,𝑖],blks[𝑘,𝑘])

]
section 𝑠𝑘2

5: for 𝑗←𝑘+1 to 𝑛−1 do
6: bmodd(blks[𝑗,𝑘],blks[𝑘,𝑘])

]
section 𝑠𝑘3

7: for 𝑖←𝑘+1 to 𝑛−1 do
8: for 𝑗←𝑘+1 to 𝑛−1 do

 section 𝑠𝑘4

9: bmod(blks[𝑗,𝑖],blks[𝑘,𝑖],blks[𝑗,𝑘])

be detected and the user will receive a wrong answer. Here,

we use the common single-event upset error model which is

widely used in previouswork, e.g. [24, 67].We further assume

that the error occurs in a random bit in an architectural reg-

ister within a random dynamic instruction in the execution.

3.1 FastFlip Analysis
A developer can use an error injection analysis like Approx-

ilyzer [67] (details in Section 5.1) to systematically simulate

errors anddeterminewhich bitflips cause SDCs.While it gives

a detailed map of vulnerable instructions, Approxilyzer re-

quires over 600 core-hours for LU, and must be rerun from

scratch after each modification to the program.

FastFlip’sper-sectionanalysis.Here,wedescribehowFast-

Flip calculates the SDC introduction and propagation char-

acteristics (i.e., an SDC specification) of the 1
st
code section in

the 2
nd
iteration of the LUD computation (referred to as 𝑠21)

given its input data 𝐼21. FastFlip repeats the following process

for each section 𝑠 of the full execution of the program𝑇 :

• FastFlip uses Approxilyzer on 𝑠21 in isolation to determine

the effect of bitflips in each instruction in 𝑠21 on its output

𝑂𝑠21
. Somebitflips lead to SDCs in𝑂𝑠21

.Wedenote𝜑𝑠21
as the

magnitude of the SDC introduced into𝑂𝑠21
by these bitflips.

• Inaddition,𝑠21 canalsoamplifySDCsalreadypresentwithin

its input 𝐼𝑠21
duetoabitflip inpreviouscomputation.FastFlip

uses a local sensitivity analysis to calculate the amplifica-

tion factor. This sensitivity analysis calculates that if the

magnitude of SDC present in 𝐼𝑠21
is Δ(𝐼𝑠21

), the resulting
SDC in𝑂𝑠21

will be at most 𝑓𝑠21
(Δ(𝐼𝑠21

))=3.2Δ(𝐼𝑠21
), i.e., 𝑠21

amplifies the input SDC by at most 3.2×.
• FastFlip combines these formulas to create a symbolic SDC
specification for section 𝑠21. Under the single bitflip error

model, the totalmagnitudeof SDC in𝑂𝑠21
(Δ(𝑂𝑠21

)) is upper-
bounded by the sum of the propagated SDC (𝑓𝑠21

(Δ(𝐼𝑠21
)))

and the SDC potentially introduced by a bitflip in 𝑠21 (𝜑𝑠21
):

Δ(𝑂𝑠21
) ≤𝜑𝑠21

+ 𝑓𝑠21
(Δ(𝐼𝑠21

)) where 𝑓𝑠21
(Δ(𝐼𝑠21

))=3.2Δ(𝐼𝑠21
)

Calculating an end-to-end SDC specification. FastFlip
next provides these SDC specifications for all sections to

Chisel [47], an SDC propagation analysis, plus a specification

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Keyur Joshi, Rahul Singh, Tommaso Bassetto, Sarita Adve, DarkoMarinov, and SasaMisailovic

Figure 1. FastFlip’s protection value (top) and protection cost
(bottom), which closely match the target value and Approx-

ilyzer’s protection cost, respectively (under 0.1% difference).

of data flow between sections (details in Section 5.1). Chisel

uses this information to propagate potential SDCs caused by

bitflips up to the final output and calculates the whole execu-

tion’s SDC specification. In this case, for two iterations of LU

with four sections, Chisel calculates the following expression:

Δ(𝑂fin) ≤4174.8𝜑𝑠11
+434.3𝜑𝑠12

+28.8𝜑𝑠13
+3.2𝜑𝑠14

(2)

+𝜑𝑠21
+𝜑𝑠22

+𝜑𝑠23
+𝜑𝑠24

.

Here 𝜑𝑠𝑥𝑦 is a symbolic variable representing the SDC poten-

tially introduced into section𝑦 in iteration 𝑥 . The numerical

coefficient next to each 𝜑𝑠𝑥𝑦 represents the Chisel-calculated

total amplification of 𝜑𝑠𝑥𝑦 by sections downstream of the er-

ror injection point (the coefficients depend on the program’s

input matrix data). FastFlip uses Equation 2 to propagate dif-

ferent SDCs from each section to the final output.

Selecting instructions to protect. FastFlip adapts the value
and cost model from [23] to select a set of instructions to pro-

tect. FastFlip associates each static instruction pcwith 1) the
value 𝑣 (pc) of protecting it, i.e., the number of SDC-causing

bitflips at pc in the program execution𝑇 , and 2) the cost 𝑐 (pc)
of said protection, i.e., the number of dynamic instances of pc
in the program execution𝑇 .

The value and cost of protecting a set of instructions are

the sum of the value and cost of protecting each instruction

in the set. This creates a trade-off space of total protection

value and cost corresponding to each possible subset of in-

structions (see Figure 1; bottom plot). Given a target total

SDC protection value, FastFlip aims to select a subset of in-

structions that minimize the total protection cost. This is a

0-1 knapsack optimization problem, which FastFlip solves

via dynamic programming.

3.2 FastFlip Results
We compare FastFlip’s results with those of an Approxilyzer-

only approach that analyzes the whole program execution at

once. We assume that a developer wants to protect against at

least 90% of SDC-causing bitflips.

Value. The top plot in Figure 1 shows the value of protecting
FastFlip’s selection of instructions against SDCs. The X and

Y-Axes show the target and achieved value, respectively. The

solidblue line showsFastFlip’s achievedvalue,whichoverlaps

the dotted black line showing the target value. FastFlip suc-

cessfully achieves the target value for the entire target range.

Cost.Thebottomplot in Figure 1 compares the cost of protect-

ing FastFlip’s and Approxilyzer’s selections of instructions

against SDCs. The X-Axis shows the target value, while the

Y-Axis shows the protection cost in terms of the number of dy-

namic instructions which must be protected. The red dashed

line and solid blue line show the cost using Approxilyzer and

FastFlip’s results, respectively. The two lines overlap, and the

excess of cost of FastFlip over Approxilyzer is below 0.1%.

Modifications.We next perform both analyses on two mod-

ified versions of this program. The small modification (a few

lines of code; see Section 5.5) uses a specialized version of

section 𝑠𝑘4 which reduces the number of bounds checkswhen

the matrix size is a multiple of the block size (as in our input).

The largemodification replaces section𝑠𝑘1 with a lookup table.

Unlike the baseline, which must inject errors in the full exe-

cution of the modified program, FastFlip only needs to inject

errors in the modified program sections, saving considerable

time. FastFlip’s maximum deviation from the target value is

0.1% for these modified programs, and the excess of cost of

FastFlip over Approxilyzer stays below 0.3%.

Analysis time. FastFlip requires 694 core-hours to analyze
the original version of the program, compared to 602 core-

hours for Approxilyzer. This is because Approxilyzer can

prune error injections by forming equivalence classes of bit-

flips (i.e., bitflips that lead to the same outcome) across mul-

tiple sections. However, FastFlip saves significant time when

later analyzing the modified versions of the program:

• Small modification: FastFlip requires 80 core-hours, com-

pared to Approxilyzer’s 625 core-hours (7.8× faster).
• Largemodification: FastFlip requires 94 core-hours, com-

pared to Approxilyzer’s 441 core-hours (4.7× faster).
This shows that FastFlip’s advantage is in analyzing programs

as they gradually evolve, saving timewith eachmodification.

4 The FastFlip Approach
Figure 2 visualizes the FastFlip approach. First, FastFlip per-

forms two sub-analyses on each program section 𝑠 in the full

program execution𝑇 : 1) FastFlip uses an error injection anal-
ysis1 to determine the effect of each injection in 𝑠 and stores

the outcome, and 2) FastFlip uses a local sensitivity analysis to
obtain an SDC propagation specification for 𝑠 , and converts

it into a total SDC specification for 𝑠 . Second, FastFlip runs an

SDC propagation analysis1 over𝑇 to obtain end-to-end SDC

propagation specifications. Third, FastFlip calculates concrete

1
Section 4.8 describes the properties of supported sub-analyses.

FastFlip: Compositional SDC Resiliency Analysis CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Figure 2. The FastFlip approach.

end-to-end SDCmagnitudes to find the probability of an SDC-

Bad outcome associated with each static instruction. Finally,

FastFlip selects a set of instructions to protectwith SDCdetec-

tion mechanisms that minimizes the cost of protection while

also ensuring that the total value of the protection against

SDCs is above a developer-defined threshold.

4.1 Preliminaries
Definitions.We use the following symbols:

• 𝑇 : dynamic trace of full program execution.

• 𝑠 : section of the full program execution (usually a function

call or execution of a code block or loop nest); 𝑠 ∈𝑇 .
• 𝐽 : set of all error injection sites in𝑇 .
• 𝐽𝑠 : set of all error injection sites in 𝑠; 𝐽𝑠 ⊆ 𝐽 .
• O𝑠 (𝑗): effect of an injection 𝑗 on the outputs of 𝑠 calculated
by the error injection analysis.

• 𝑖𝑠,0,...,𝑖𝑠,𝑚 and 𝑜𝑠,0,...,𝑜𝑠,𝑛 : inputs and outputs of 𝑠 .

• 𝑖𝑇,0,...,𝑖𝑇,𝑚 and 𝑜𝑇,0,...,𝑜𝑇,𝑛 : inputs and outputs of𝑇 .

• 𝑓𝑠,𝑘 ,𝑓𝑇,𝜆,𝑓𝑇,𝜆,𝑠 : specifications of how the program sections

propagate SDCs, respectively calculated by the local sensi-

tivity analysis, the SDC propagation analysis, and FastFlip.

• 𝜑𝑠,𝑘 ,𝜑∗,∗,𝜑𝑠,∗,𝜑𝑠,∗: symbolic variables (or sets thereof) for

SDCs introduced into section outputs by errors.

• 𝑝 (𝑗): probability that the error occurs at error site 𝑗 ∈ 𝐽 .
• PC(𝑗): maps 𝑗 ∈ 𝐽 to the corresponding static instruction
identifier pc. PC(𝐽) denotes the set of all static instructions
of interest for error injection.

• 𝜀𝜆 : maximum acceptable SDC for output 𝑜𝑇,𝜆 of𝑇 .

• 𝑣 (pc): the value of protecting the static instruction at pc.
• 𝑐 (pc): the cost of protecting the static instruction at pc.
• pcprot: static instructions selected for SDC protection.

Analysis inputs.FastFlip accepts the full program𝑇 , its parti-
tion into sections 𝑠 , a specification of how data flows between

sections, the probabilities 𝑝 (𝑗), the SDCmagnitude limits 𝜀𝜆 ,

and the protection cost function 𝑐 (pc) as inputs.
Sections are developer-identified parts of the program that

perform specific tasks, such as function calls, code blocks, or

loop nests. Developers can obtain the dataflow specification

using standard compiler analysis passes. Expert developers

can also input this data manually, as we do.

Assumptions. As in previous works [24, 67], FastFlip as-

sumes that: 1) exactly one error occurs during the execution

of the full program, and 2) the program’s input is SDC-free.

4.2 Error Injection Analysis of Program Sections
FastFlip runs an error injection analysis on each program sec-

tion𝑠 ∈𝑇 to determine the effect of errors on the outputs of𝑠 . If

an injectederror 𝑗 causesadetectableoutcome(crash, timeout,

misformatted output, etc.), then the outcomeO𝑠 (𝑗)=detected.
Otherwise, the outcomeO𝑠 (𝑗)= (𝑟0,𝑟1,...,𝑟𝑛), where 𝑟𝑘 is the
magnitude of SDC caused by the injection 𝑗 in output 𝑜𝑠,𝑘 of

𝑠 . If the injection is masked for an output 𝑜𝑠,𝑘 , then 𝑟𝑘 =0. De-

pending on the application and analysis, the SDCmagnitude

can be measured as absolute error, relative error, PSNR, etc.

4.3 SDC Propagation Analysis in Program Sections
FastFlip performs a local sensitivity analysis on each pro-

gram section 𝑠 ∈𝑇 to calculate how it amplifies SDCs present

within its input. The local sensitivity analysis produces an

SDC propagation specification for 𝑠 of the general form:

𝑛∧
𝑘=0

Δ(𝑜𝑠,𝑘) ≤ 𝑓𝑠,𝑘 (Δ(𝑖𝑠,0),...,Δ(𝑖𝑠,𝑚))

The specification bounds the SDC Δ(𝑜𝑠,𝑘) in each output 𝑜𝑠,𝑘
of 𝑠 using a function 𝑓𝑠,𝑘 of the SDC bounds of the inputs of

𝑠 . FastFlip adds symbolic variables 𝜑𝑠,𝑘 to represent the mag-

nitude of SDC introduced to 𝑜𝑠,𝑘 during the execution of 𝑠 as

a result of an error within 𝑠 . In the single error model, if the

input to 𝑠 already contains SDC, then the error occurred in a

previous program section and 𝑠 cannot introduce additional

SDC. Thus, we can write the total SDCmagnitude in the out-

puts of 𝑠 as the sum of the SDCmagnitude due to an error in

𝑠 and the SDC propagated by 𝑠 from its input to its output:∧
𝑘

Δ(𝑜𝑠,𝑘) ≤ 𝑓𝑠,𝑘 (Δ(𝑖𝑠,0),...,Δ(𝑖𝑠,𝑚))+𝜑𝑠,𝑘 (3)

4.4 End-to-End SDC Propagation Analysis
FastFlip runs an SDC propagation analysis on the entire pro-

gramexecution𝑇 . FastFlip provides the analysiswith the total

SDC specifications from Equation 3 for each 𝑠 ∈𝑇 . The anal-
ysis also uses the developer-provided dataflow specification

indicating how outputs of one section flow into the inputs of

subsequent sections.With this information, the SDCpropaga-

tion analysis calculates the relationship between errors that

occur anywhere in𝑇 to the SDC in the outputs of𝑇 . It creates

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Keyur Joshi, Rahul Singh, Tommaso Bassetto, Sarita Adve, DarkoMarinov, and SasaMisailovic

an end-to-end SDC propagation specification of the form:

𝑛∧
𝜆=0

Δ(𝑜𝑇,𝜆) ≤ 𝑓𝑇,𝜆 (Δ(𝑖𝑇,0),...,Δ(𝑖𝑇,𝑚),𝜑∗,∗)

where𝜑∗,∗ is the list of all𝜑𝑠,𝑘 variables fromEquation 3 across

all sections. Like previous analyses [66, 67], FastFlip assumes

that the input to the first section is SDC-free to exclusively

focus on SDCs caused by the analyzed program. So, we can

simplify 𝑓𝑇,𝜆 by removing all Δ(𝑖𝑇,∗):∧
𝜆

Δ(𝑜𝑇,𝜆) ≤ 𝑓𝑇,𝜆 (𝜑∗,∗)

We next create specialized versions of 𝑓𝑇,𝜆 by noting that,

under the single error model, the𝜑 variables for only one sec-

tion can be nonzero at a time: 𝑓𝑇,𝜆,𝑠 (𝜑𝑠,∗) = 𝑓𝑇,𝜆 (𝜑𝑠,∗,𝜑𝑠,∗ =0).
We rewrite the end-to-end SDC propagation specification as

shown below:

𝑗 ∈ 𝐽𝑠⇒
∧
𝜆

Δ(𝑜𝑇,𝜆) ≤ 𝑓𝑇,𝜆,𝑠 (𝜑𝑠,∗) (4)

Equation 4 states that, if an error occurs in section 𝑠 (𝑗 ∈ 𝐽𝑠),
then the upper bound on the SDC in output 𝑜𝑇,𝜆 of𝑇 is given

by 𝑓𝑇,𝜆,𝑠 (𝜑𝑠,∗), a function of the SDCs in the outputs of 𝑠 .

4.5 CalculatingValueofProtecting Static Instructions
FastFlip uses the injection outcomes (Section 4.2) and Equa-

tion 4 to answer the following question: For a given static
instruction identified by its program counter pc in the full ex-
ecution𝑇 , what is the total probability that error injections in
pc will result in SDC-Bad (|SDC|>𝜀𝜆) for any output 𝑜𝑇,𝜆 of𝑇 ?
This is the value 𝑣 (pc) of protecting pc.

Algorithm 2 Find the value of protecting static instructions.
Input •𝑇 , 𝐽𝑠 , PC(𝑗), 𝜀𝜆 , 𝑝 (𝑗): defined in Section 4.1;

•O𝑠 (𝑗): outcome of injection at 𝑗 ∈ 𝐽𝑠 ;
• 𝑓𝑇,𝜆,𝑠 : SDC propagation specifications fromEquation 4

Returns ∀pc. 𝑣 (pc): value of protecting pc
1: 𝑣←{∀pc. pc ↦→0 }
2: for 𝑠 in𝑇 and 𝑗 in 𝐽𝑠 do
3: pc←PC(𝑗)
4: if O𝑠 (𝑗)≠detected then
5: if ∃𝜆. 𝑓𝑇,𝜆,𝑠 (O𝑠 (𝑗))>𝜀𝜆 then
6: 𝑣 (pc)←𝑣 (pc)+𝑝 (𝑗)
7: ∀pc. 𝑣 (pc)←𝑣 (pc)/Σpc𝑣 (pc)

Algorithm 2 shows how FastFlip calculates 𝑣 (pc). For each
error injection in each section, FastFlip checks if the error

results in a detectable outcome. If not, FastFlip calculates the

RHS of Equation 4 to use as an upper bound on themagnitude

of SDCs in the outputs of𝑇 as a result of the error (i.e., the LHS

of Equation 4). If the SDC in any output is SDC-Bad, FastFlip

adds the probability of that error to the value of protecting

pc. Lastly, FastFlip rescales the values so that the total value
of protecting all static instructions is 1.

4.6 Finding an Optimal Set of Instructions to Protect
FastFlip uses the values 𝑣 (pc) calculated by Algorithm 2 for

eachpc and the correspondingprotection costs𝑐 (pc) as inputs
to a 0-1 knapsack optimization problem.We model the value

and cost of protecting a set of instructions as the sum of the

value and cost of protecting each instruction in the set. Given

a developer-defined target total protection value 𝑣trgt, Fast-

Flip solves the knapsack problem via the standard dynamic

programming approach to select a set of static instructions

pcprot to protect that minimizes the total protection cost:

argmin
pcprot⊆PC(𝐽)

∑︁
pc∈pcprot

𝑐 (pc) such that
∑︁

pc∈pcprot

𝑣 (pc) ≥𝑣trgt

We represent the set of all static instructions of interest

PC(𝐽) as a binary vector, with one bit per static instruction. A
bit in the vector is set if and only if the corresponding static in-

struction is in pcprot. Under these conditions, the objective and
the constraints become linear functions of binary variables.

To explore the trade-off space between value and cost, Fast-

Flip selects the optimal pcprot for a range of 𝑣trgt values (e.g.,
𝑣trgt ∈ [0.9, 1.0]). This process corresponds to solving the

value / cost multi-objective optimization problem using the

𝜖-constraint method [46] (i.e., turning one of the objectives

into a constraint) to obtain Pareto-optimal choices for pcprot.

4.7 Composability
When developers modify a program section, FastFlip must

rerun the error injection and local sensitivity analysis on

the modified program section. If the modification changes

the input to a downstream section by changing the modified

section’s semantics, FastFlip must also rerun these analyses

on the affected downstream section. FastFlip can reuse the

results of these sub-analyses for all other sections. FastFlip

uses the dataflow specification to identify such dependencies

between inputs and outputs across sections.

Since the error injection analysis is themain contributor to

analysis time, this approach significantly speeds up FastFlip

compared to rerunning the error injection analysis on the full

modified program, even when re-analyzing multiple sections.

4.8 Characteristics of Compatible Sub-Analyses
To enable its analysis, FastFlip must use error injection and

SDC propagation analyses that satisfy certain key criteria:

Error injection analyses. The error injection analysis must

separately report the outcome for errors in each error site in

the program that the developer may wish to protect (e.g., [24,

67]), in contrast to just computing the overall outcome sta-

tistics (e.g., [53]). This provides FastFlip with per-instruction

error vulnerability information that is critical to its approach.

SDC propagation analyses. The SDC propagation analysis

must support the SDC magnitude metric used by the error

FastFlip: Compositional SDC Resiliency Analysis CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

injection and sensitivity analyses. The analysis must also

support the propagation of SDCs whose magnitude is repre-

sented by a symbolic variable. Examples of such analyses are

Chisel [47], DeepJ [34, 35], and Daisy [15].

Error and costmodels. FastFlip’s formalism supports mul-

tiple error models. The error injection analysis may inject

single or multi-bit errors into one or more error siteswithin a
single section. The error sites can be individual instructions or
coarser-grained program structures such as statements. Fast-

Flip also supportsmultiple costmodels provided externally as

a function 𝑐 (pc). This includes estimates of runtime overhead

for duplicating and comparing the results of single instruc-

tions (e.g., [56]), or the cost of specialized error detection for

tasks or instruction blocks (e.g., [1, 2, 29]).

4.9 Factors That Affect the Precision of FastFlip
Inter-sectionmasking. Inter-section masking occurs when

an SDCpresent in one section ismasked by a downstream sec-

tion. FastFlip conservatively assumes that SDCs introduced in

any section result in SDCs in the final outputs. The frequency

of this masking is highly application-dependent.

Imprecisionof sub-analyses. Imprecision in the error injec-

tion and SDCpropagation sub-analyses used by FastFlip leads

to imprecision in FastFlip. As FastFlip is a general approach

that can use any sub-analysis that satisfies the requirements

in Section 4.8, FastFlip’s precision can be improved by using

newer, more precise sub-analyses as they become available.

Side effects.Due to errors, a sectionmay cause additional un-

expected side effects that donot occur in error-free executions.

Consequently, the section outputs may be SDC-free, but the

error may still cause SDCs in later sections. For example, the

error may cause the section to overwrite live data due to bad

memory address calculations, or it may corrupt a live value

while popping it from the stack at the end of the section. Fast-

Flip mitigates these issues by checking all live variables at the

end of each section for SDCs, and not just the section outputs.

Untested error sites. A small number of error sites in the

programmay not be included in any program section. For ex-

ample, if sections are executedmultiple times within an outer

loop, then the instructions which check the loop exit condi-

tionsmay be excluded fromall program sections. FastFlip con-

servatively assumes that, if an error occurs at suchanuntested

error site, then it will always produce an SDC-Bad outcome.

More rigorously, FastFlip creates a special section 𝑠⊥ contain-
ing all these untested error sites 𝑗 and assumes that ∀𝑗 ∈ 𝐽𝑠⊥ ,
O𝑠 (𝑗)= (∞,...,∞). This reduces precision, as not all errors at
the untested sites actually result in an SDC-Bad outcome.

4.10 AdaptingandCompensatingforLossofPrecision
A loss of precision due to the factors described in Section 4.9

leads to a loss of utility. That is, it can cause FastFlip to pro-
tect against a smaller number of SDC-causing errors than ex-

pected, or increase the cost of protecting FastFlip’s selection

of instructions beyond the minimum necessary cost. FastFlip

adaptively adjusts the target value 𝑣trgt used in Section 4.6 to

compensate for this loss of utility. In our experiments, this

adjustment is insignificant except for one benchmark.

Measuring utility. FastFlip compares its utility to the utility

obtained via a baseline monolithic error injection analysis

that analyzes the whole program as a single section. FastFlip

uses two primary metrics to measure utility:

First, FastFlip treats the outcome labels of the baseline

analysis as the ground truth and calculates the value of pro-

tecting its selection against SDC-Bad outcomes according

to these alternate outcome labels. FastFlip refers to the pro-

tection value of its selection calculated in this manner as the

achievedvalue 𝑣achv. FastFlip thencalculates the loss of value as
𝑣loss=𝑣trgt−𝑣achv. 𝑣loss measures the degree by which FastFlip

undershoots 𝑣trgt; a lower 𝑣loss is better.

Second, FastFlip calculates its excess cost over the baseline

monolithic analysis. Specifically, if the costs associated with

protecting the two selections of instructions against SDCs are

𝑐FF (for FastFlip) and𝑐Base (for thebaseline analysis), the excess

cost is 𝑐exc=𝑐FF−𝑐Base. 𝑐exc measures the inefficiency of Fast-

Flip’s selection forprotectingagainst SDC-Badoutcomes com-

pared to the baseline analysis’s selection; a lower 𝑐exc is better.

When analyzing a program, FastFlip can simultaneously

run thebaseline error injectionanalysis for aminimal increase

in the analysis time. To do so, FastFlip checks the effect of

each error in each section on both the section outputs and the

final outputs. FastFlip efficiently calculates 𝑣loss and 𝑐exc using

the outcome labels from FastFlip and the baseline analysis.

Adjusting the target value. FastFlip replaces the original
target 𝑣trgt with an adjusted target 𝑣

′
trgt. Let the achieved value

for this adjusted target be 𝑣 ′achv. FastFlip minimizes 𝑣 ′trgt such
that 𝑣 ′achv ≥𝑣trgt. If 𝑣

′
trgt>𝑣trgt, then the cost of protecting Fast-

Flip’s selection increases, with larger adjustments leading to

larger increases. If instead 𝑣 ′trgt<𝑣trgt, the cost decreases.
Target adjustment for modified program versions. If
the number of modifications since the most recent target ad-

justment (𝑚adj) is below a developer-defined threshold (𝑃adj),

FastFlip executes only its own time-saving analysis and uses

the existing adjusted target (𝑣 ′trgt) to choose the instructions to
protect. As programmodifications accumulate, the adjusted

target may no longer provide the expected compensation

for utility loss. Thus, once𝑚adj ≥ 𝑃adj, FastFlip recalculates
𝑣 ′trgt by running a fresh analysis of the whole programwhile

simultaneously running the monolithic analysis.

5 Methodology
5.1 Choice of Sub-Analyses
We instantiate FastFlipwith the Approxilyzer [67] error injec-

tion analysis and the Chisel [47] SDC propagation analysis.

Approxilyzer is a bitflip error injection analysis that focuses
on architectural CPU registers within each dynamic instruc-
tion in a program execution. Approxilyzer enumerates bitflip

injection sites in the correct dynamic trace of the program

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Keyur Joshi, Rahul Singh, Tommaso Bassetto, Sarita Adve, DarkoMarinov, and SasaMisailovic

for a particular input. It uses heuristics to form equivalence

classes of bitflips that cause similar outcomes. Then, it injects

a bitflip for a single pilot from each equivalence class into the

correct execution of the programwithin the gem5 simulator,

continues the now tainted program execution (with possibly

incorrect control flow), and records the effect of the bitflip

on the program output. Lastly, it applies the outcome of this

pilot bitflip to all members of the equivalence class.

Chisel is an SDCpropagation analysis that calculates the end-

to-end SDC propagation function 𝑓𝑇,𝜆 as a conservative affine
function of the symbolic SDC variables 𝜑∗,∗. Chisel conserva-
tively assumes that each program section always amplifies

input SDCs by the maximum amplification factor for that

section for any input. Chisel supports diverging control flow

paths by calculating the maximum possible SDC amplifica-

tion over any path. Due to these assumptions, it generates

conservative end-to-end SDC specifications. We added sup-

port for symbolic SDC variables to Chisel in order to calculate

symbolic end-to-end SDC specifications for FastFlip.

5.2 ErrorModel
Although FastFlip supports multi-bit error models, our evalu-

ation uses the same error model as Approxilyzer [67], shown

below, to ensure a fair comparison. We inject one single-bit

transient error per simulation in an architectural general pur-

pose or SSE2 register. We target both source and destination

registers in dynamic instructionswithin the region of interest.

We do not inject errors into special-purpose, status, or control

registers (e.g., %rsp, %rflags) as we assume that they always

need protection (which can be provided by hardware). Sim-

ilarly, we assume that caches are protected by hardware (e.g.,

using ECC). As in previous works (e.g., [37, 43]), we assume a

uniformprobability distribution of errors across all error sites.

5.3 SDCDetectionModel
We assume that an instruction selected for protection is du-

plicated and then followed by an equality check of the results.

The duplicated code and increased register pressure leads to

runtime overhead. However, by rearranging instructions and

checks, the overhead/cost for extensive instruction duplica-
tion across the programcan be reduced to 29%on average [48].

Selective duplication has even lower overhead (e.g. [32]).
Value and cost of detection.We adapt the value and cost

model from [23]:

• The value 𝑣 (pc) of protecting a static instruction pc is pro-
portional to the number of distinct errors injected into pc
that produce an SDC-Bad outcome (using uniform 𝑝 (𝑗)).
• Thecost𝑐 (pc) ofprotectingpc is proportional to thenumber

of dynamic instances of pc in the program trace.

5.4 Benchmarks
Table 1 presents our benchmarks, and we describe them next:

• BScholes: Black-Scholes analysis from PARSEC [5].

Table 1. List of FastFlip benchmarks. The Sections column

shows static(×dynamic) instances of sections in the trace.
Benchmark Input size Sections # Error Sites (|J|)

BScholes 2 options 4 (×2) 36.7K

Campipe 32×32 5 (×1) 72.7M

FFT 256×2 5 (×1) 9.23M

LUD 16×16 4 (×2) 1.75M

SHA2 32 bytes 3 (×1) 403K

• Campipe: The raw image processing pipeline for the Nikon

D7000 camera from [71].

• FFT : Fast Fourier Transform from Splash-3 [57].

• LUD: Blocked LU decomposition from Splash-3 [57].

• SHA2: The SHA-256 hash function from [49].

For FFT and LUD,we use the same input size as theminimized

input found by Minotaur [45], a technique that reduces er-

ror injection analysis time while retaining program counter

coverage. For BScholes, we manually reduced the minimized

input with 21 options found byMinotaur to 2 optionswithout

reducing the program counter coverage. For Campipe, we use

the reference 32×32 input provided with the implementation.

For SHA2, we use a common cryptographic key size (256 bits).

5.5 CodeModifications for Benchmarks
To test the advantages offered by FastFlip for evolving pro-

grams, we also analyze modified versions of each benchmark.

Then, we compare the results of the baseline analysis (must

re-analyze thewhole program) to those of FastFlip (must only

inject errors in modified sections). We experiment with two

types of semantics-preserving modifications:

Smallmodifications represent simple modifications that de-

velopers or compilers may make while optimizing and main-

taining the program. Such modifications of up to 15 lines of

code constitute a majority of open-source commits [3]. For

Campipe and FFT, we store an expression used in multiple

locationswithin the section in a variable to improve code read-

ability. ForLUD,we introduceaspecializedversionofasection

that reduces the number of bounds checks if it detects that the

matrix size is a multiple of the block size (as is the case for our

input). For BScholes, we eliminate a redundant floating-point

operation in the cumulative normal distribution function. For

SHA2, we similarly eliminate a redundant shift operation

(without making the runtime input-dependent).

Largemodifications replace a program section with a lookup

table. The table maps the inputs of that section to the corre-

sponding outputs. If the modified section finds the current

input in this table, it returns the corresponding output. Oth-

erwise, it executes the original section code.

5.6 Baseline, Comparison, and Experimental Setup
Software and hardware. FastFlip uses gem5-Approxilyzer

version22.1 [66] simulatinganx86-64CPUas thearchitecture

simulator. We performed our experiments on AMD Epyc pro-

cessors with 94 error injection experiment threads.

FastFlip: Compositional SDC Resiliency Analysis CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Region of interest.We focus on the computational portion

of each benchmark and do not analyze I/O code.

SDCmagnitude metric.We use maximum element-wise

absolute difference as the SDCmetric. If 𝑜𝑘 [ℓ] represents the
ℓ th element of an output 𝑜𝑘 and the modified output due to an

error is 𝑜𝑘 , then the SDCmetric is maxℓ |𝑜𝑘 [ℓ]−𝑜𝑘 [ℓ] |.
SDC-Bad threshold.Wefirst analyze all benchmarks assum-

ing that any SDC is SDC-Bad (∀𝜆. 𝜀𝜆 =0). Next, we relax this

requirement in Section 6.4 by assuming that SDCmagnitudes

up to 0.01 are tolerable, i.e., SDC-Good (∀𝜆. 𝜀𝜆 =0.01) for all

benchmarks except SHA2 (whose applications require the

output to be fully precise).

Sensitivity analysis parameters.As we consider the maxi-

mum tolerable SDCmagnitude 𝜀𝜆 to be 0.01 in Section 6.4, we

use this as the maximum perturbation during the sensitivity

analysis. To estimate theLipschitz constant𝐾 (Equation1),we

perform 10
6
random perturbations up to 𝜀𝜆 . For array inputs,

we randomly perturb single, multiple, or all elements.

Comparison metrics. We compare the performance and

utility of FastFlip to a baseline monolithic Approxilyzer-only

approach. This baseline approach uses Approxilyzer to inject

bitflips in the whole program at once and uses its results to se-

lect instructions to protect. For performance, we compare the

analysis times of FastFlip and Approxilyzer run separately.

For comparing utility, we compare the selections of in-

structions to protect made by the two approaches using the

value and cost metrics. For comparison, we choose three tar-

get values in the total value / cost trade-off space: 𝑣trgt ∈
{0.90,0.95,0.99}, corresponding to protecting against 90%,

95%, and 99% of errors that cause unacceptably large SDCs.

Pruning error range. Approxilyzer’s use of equivalence
classes as described in Section 5.1 speeds up both FastFlip and

the baseline analysis. However, the pilot is not a perfect pre-

dictor of the outcomes of the pruned injections (i.e., the rest

of the equivalence class). Figure 5 in Approxilyzer [67] shows

that, on average, 4% of pruned injections have an outcome

that significantly differs from that of the pilot.

Therefore, we establish an error range around the achieved

valueofSDCprotection toaccount for thisdiscrepancyamong

the outcomes of injections in an equivalence class. This error

range depends on the pilot prediction inaccuracy and the frac-

tion of error sites with SDC-Bad outcomes that are protected.

For FFT, LUD, and BScholes, we use the benchmark-specific

pilot prediction inaccuracy fromFigure 5 inApproxilyzer [67]

(3%, 4%, and 10% respectively). For Campipe and SHA2, we

consider the average inaccuracy fromthe samefigure (4%).We

give details of the error range calculation in [27, Section 5.4.5].

If 𝑣achv iswithin or above this error range around 𝑣trgt, thenwe

consider FastFlip’s result to be acceptable, even if 𝑣achv<𝑣trgt.

Timeouts. FastFlip assumes that if the error causes the run-

time of a program section to exceed 5× the nominal runtime,

then the execution times out,which is a detected outcome.We

use the same timeout rule for theApproxilyzer-only baseline.

6 Evaluation
6.1 Utility of FastFlip vs. Approxilyzer
Table 2 compares the utility of FastFlip and Approxilyzer for

selective protection against SDCs, using themetrics described

in Section 4.10. The pairs of columns show the utility com-

parison for the target protection values 0.90, 0.95, and 0.99

(90%, 95%, and 99% of SDC-causing errors) respectively. The

first column in each pair shows FastFlip’s achieved protection

value. The second column shows the cost of protecting Fast-

Flip’s selection and compares this to the cost of protecting

Approxilyzer’s selection.

FastFlip successfully meets all target values for the unmod-

ified (None) versions of each benchmark. Since FastFlip reuses

the adjusted targets for the modified versions, it may not pre-

cisely meet the target for those versions. The maximum loss

of value compared to the target is 0.017 (1.7%) for SHA2-Large.

In all cases, the target value is within FastFlip’s value error

range caused by injection pruning.

For most benchmarks, the cost of protecting FastFlip’s se-

lection of instructions is at most 0.011 (1.1%) more than the

cost of protecting Approxilyzer’s selection. The exception is

Campipe, for which FastFlip’s cost is up to 0.068 (6.8%) higher.

Unlike the other benchmarks, FastFlip has to aggressively ad-

just the target values forCampipe in order tomeet the original

targets to compensate for the loss of precision caused by inter-

section masking. We observed that if we removed the last

section of Campipe (the primary cause of inter-section mask-

ing), FastFlip’s target adjustments became less aggressive.

This suggests that more precise SDC propagation analyses

that also calculate the probability of SDCmaskingmay reduce

the need for target adjustment.

The geomean cost of protecting FastFlip’s selection is 0.601,

0.685, and 0.819 for the target protection values 0.90, 0.95,

and 0.99, respectively. This shows that it is possible to protect

against 90% of SDC-causing bitflips by protecting on average

60% of all dynamic instructions, but protecting against the

remaining SDCs quickly leads to diminishing returns.

6.2 Performance of FastFlip vs. Approxilyzer
Table 3 compares the analysis time of FastFlip and Approx-

ilyzer. Columns 1-2 show the benchmark name and version,

respectively. Columns 3-4 show the analysis time for FastFlip

and Approxilyzer for that version of the benchmark, respec-
tively. Column 5 shows the speedup of FastFlip over Approx-

ilyzer. Wemeasure analysis time in core-hours. As the error
injectionanalysis ishighlyparallelizable, theactualwall-clock

time is much lower when using multiple CPU threads. The

speedups in terms of wall-clock time have similar trends.

For FastFlip, error injection consumes 99% of the analysis

time. The sensitivity analysis requires less than five minutes

of wall-clock time. The symbolic SDC propagation analysis

and knapsack solver each require under one minute, even for

programs or inputs much larger than our benchmarks.

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Keyur Joshi, Rahul Singh, Tommaso Bassetto, Sarita Adve, DarkoMarinov, and SasaMisailovic

Table 2. Comparison of FastFlip and Approxilyzer utility when all SDCs are unacceptable (SDC-Bad) and target adjustment

(Section 4.10) is used. A
✓
indicates that the achieved value is within the value error range of FastFlip.

vtrgt=0.90 vtrgt=0.95 vtrgt=0.99

Benchmark Modification Value Cost (diff) Value Cost (diff) Value Cost (diff)

BScholes

None 0.901
✓

0.635 (+0.000) 0.950
✓

0.717 (+0.000) 0.990
✓

0.827 (+0.000)

Small 0.899
✓

0.634 (+0.003) 0.950
✓

0.713 (+0.000) 0.990
✓

0.821 (+0.000)

Large 0.898
✓

0.669 (+0.000) 0.949
✓

0.753 (+0.000) 0.991
✓

0.849 (+0.000)

Campipe

None 0.915
✓

0.611 (+0.038) 0.950
✓

0.676 (+0.017) 0.991
✓

0.807 (+0.024)

Small 0.924
✓

0.611 (+0.060) 0.954
✓

0.678 (+0.030) 0.990
✓

0.807 (+0.034)

Large 0.912
✓

0.760 (+0.068) 0.961
✓

0.819 (+0.043) 0.993
✓

0.899 (+0.015)

FFT

None 0.900
✓

0.544 (+0.011) 0.950
✓

0.629 (+0.002) 0.990
✓

0.780 (+0.000)

Small 0.904
✓

0.542 (+0.010) 0.950
✓

0.629 (+0.004) 0.990
✓

0.781 (+0.002)

Large 0.900
✓

0.492 (+0.001) 0.950
✓

0.586 (−0.000) 0.987
✓

0.716 (−0.016)

LUD

None 0.900
✓

0.603 (+0.000) 0.950
✓

0.694 (+0.000) 0.990
✓

0.873 (+0.000)

Small 0.901
✓

0.606 (+0.002) 0.951
✓

0.698 (+0.002) 0.990
✓

0.875 (+0.001)

Large 0.902
✓

0.560 (+0.002) 0.951
✓

0.640 (+0.003) 0.990
✓

0.826 (−0.001)

SHA2

None 0.900
✓

0.666 (+0.001) 0.950
✓

0.772 (+0.000) 0.990
✓

0.908 (+0.001)

Small 0.900
✓

0.665 (+0.000) 0.949
✓

0.771 (−0.001) 0.990
✓

0.908 (+0.000)

Large 0.883
✓

0.476 (−0.007) 0.943
✓

0.551 (−0.003) 0.985
✓

0.655 (−0.007)

Table 3.Analysis execution time comparison.

Analysis time (core-hours)

Bench. Modif. FastFlip Approxilyzer Speedup

BScholes

None 69 hrs 65 hrs 0.9×
Small 42 hrs 62 hrs 1.5×
Large 3 hrs 24 hrs 8.4×

Campipe

None 2459 hrs 2631 hrs 1.1×
Small 158 hrs 2720 hrs 17.2×
Large 45 hrs 494 hrs 11.0×

FFT

None 980 hrs 520 hrs 0.5×
Small 300 hrs 509 hrs 1.7×
Large 93 hrs 513 hrs 5.5×

LUD

None 694 hrs 602 hrs 0.9×
Small 80 hrs 625 hrs 7.8×
Large 94 hrs 441 hrs 4.7×

SHA2

None 726 hrs 728 hrs 1.00×
Small 718 hrs 726 hrs 1.01×
Large 43 hrs 45 hrs 1.05×

To enable target adjustment, FastFlip simultaneously runs

the Approxilyzer analysis as described in Section 4.10.We use

the methodology from [45, Section 4.7] to confirm that the

time required for this approach is at most 1%more than the

greater of the analysis times of FastFlip and Approxilyzer for

theunmodifiedversionsof thebenchmarks.AsFastFlip reuses

the adjusted targets formodifiedbenchmarks, it does not need

to use this approach when the benchmarks are modified.

The two approaches have similar analysis times for the

unmodified (None) versions of all benchmarks except FFT. For

FFT, Approxilyzer prunes a larger number of injections since

it finds that an operation is repeated in different program

sections. As FastFlip injects errors into each section indepen-

dently, it cannot similarly prune injections across sections.

For the modified benchmarks, the speedup of FastFlip de-

pends on the number of error sites that FastFlip must re-

analyze compared to the full program. If the modified pro-

gram sections represent a small fraction of the total error sites,

FastFlip provides a large speedup. Crucially, FastFlip is at least

1.7× faster when analyzing the modified versions of FFT. If

the modified program sections represent a large fraction of

the total error sites, FastFlip provides a smaller speedup. This

leads to a negligible speedup for SHA2, where we modified

the most expensive section of the program.

These results show that FastFlip can save significant time

when analyzing evolving programs. Here, even a single re-

analysis helped to offset the original analysis overhead. For

modern software systems that developers gradually modify

over time, FastFlip offers ever-increasing savings.

6.3 Effects of Target Value Adjustment
For all benchmarks except Campipe, the original and adjusted

target values are virtually the same: the difference is within

0.4%of theoriginal targets.As such, the conclusionspresented

in Section 6.1 are valid even without target adjustment for

these benchmarks. For Campipe, target adjustment helps to

address the issuewith the last section described in Section 6.1.

Table 4 compares the utility of FastFlip and Approxilyzer

for Campipe when FastFlip does not use target adjustment.

The format is similar to that of Table 2, except thatwe omit the

cost columns and focus on whether FastFlip still achieves the

FastFlip: Compositional SDC Resiliency Analysis CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

Table 4. Comparison of FastFlip and Approxilyzer utility

for Campipe without target adjustment. A
✓
indicates that

the achieved value is within the value error range of FastFlip,

while a
✗
indicates the opposite. Table 2 shows the improved

resultswith target adjustment.

Value@ vtrgt=

Benchmark Modif. 0.90 0.95 0.99

None 0.848
✗

0.920
✓

0.977
✓

Campipe Small 0.879
✓

0.925
✓

0.980
✓

Large 0.868
✗

0.925
✗

0.979
✓

target value.Without target adjustment, FastFlip undershoots

the targets by as much as 0.052 (5.2%), and the original target

valuesdonot always fallwithinFastFlip’s achievedvalueerror

range.These results showthe importanceof target adjustment

to ensure that FastFlip meets the original protection target.

6.4 Ignoring Acceptably Small SDCs
Next, we compare the utility of FastFlip and Approxilyzer

when small SDCs (≤ 0.01) are considered acceptable (SDC-

Good) and the analyses focus on protecting against errors

that cause larger SDCs (SDC-Bad).

FastFlip successfully meets all target values for all bench-

marks. The maximum loss of value compared to the target

is 0.014 (1.4%) for FFT-Large. In all cases, the target value is

within FastFlip’s achieved value error range caused by injec-

tionpruning.Formostbenchmarks, thecostofprotectingFast-

Flip’s selection of instructions is at most 0.020 (2%) more than

the cost of protectingApproxilyzer’s selection. The exception

is Campipe, for which FastFlip’s cost is higher by as much as

0.057 (5.7%), again due to aggressive target adjustment.

The geomean cost of protecting FastFlip’s selection is 0.619,

0.720, and 0.849 for the target protection values 0.90, 0.95, and

0.99, respectively. FastFlip obtains the results for this scenario

at the same time as the results in Table 2 for negligible addi-

tional analysis time (less than one minute). We describe these

results in more detail in [27, Section 5.5.5].

7 Limitations
In Section 4.6, FastFlip assumes that the cost of protecting

multiple instructions is equal to the sum of protecting each

individual instruction in that set. However, protecting mul-

tiple adjacent instructions via techniques such as instruction

duplication may lead to excess basic block fragmentation or

register pressure, which increases the protection cost beyond

the sumof the protection cost for each instruction in isolation.

DRIFT [48] describes methods for mitigating this issue.

Section 4.8 describes the criteria that the error injection

and SDC propagation analyses must satisfy for use with Fast-

Flip. As these analyses form a core part of FastFlip’s approach,

they affect FastFlip’s precision and the error models that it

can support. Section 4.9 describes several factors that reduce

the precision of FastFlip, as well as methods to mitigate these

issues. Not all of these issues can be completely eliminated,

reducing FastFlip’s precision compared to the baseline mono-

lithic analysis. Our evaluation shows that FastFlip effectively

compensates for this loss of precision by adjusting the target.

However, target adjustment can lead to an increase in protec-

tion cost, such as for Campipe in Table 2. As more powerful,

precise, and general error injection and SDC propagation

analyses become available, FastFlipwill be able to use them to

support more error models and provide more precise results.

Section 4.10 describes a simple heuristic that FastFlip uses

to determine if it needs to re-analyze the whole program af-

ter a modification for more precise target adjustment. Our

evaluation shows that this heuristic is generally capable of

maintaining FastFlip’s precision for modified programs. Re-

gardless, we believe that more complex heuristics (e.g., those

based on the lines of codemodified) could provide better preci-

sion by accounting for the size and nature of themodification.

Section 6.2 shows that FastFlip is much slower than Ap-

proxilyzerwhen analyzing the unmodified version of FFT due

to less effective injection pruning. We expect FastFlip to also

exhibit such a slowdown for other computations in which

injection pruning is particularly effective. However, Table 3

also shows that this initial disadvantage is quickly amortized

when analyzing modified versions of such programs.

8 RelatedWork
Error injection analyses. Error injection analyses operate
at different levels of abstraction, including hardware, assem-

bly, and IR [11, 12, 18, 28, 30, 31, 39–41, 43, 53, 54, 59]. These

analyses typically use sampling: they select a statistically sig-
nificant number of error sites at random and only perform

error injections at those sites.Although this is sufficient topro-

vide overall outcome statistics, a developer cannot use such

results to determine which specific instructions or blocks of

instructions are particularly vulnerable to SDCs to protect

them.However, FastFlip can still use these analyses if they are

modified to perform full instruction-level error injection like

Approxilyzer [66, 67].Minotaur [45] reduces the size of inputs

(and therefore analysis time) required to test the reliability of

programswhensubjected toerrorswithout compromising the

coverage of error sites. FastFlip further reduces the analysis

times for these minimized inputs as the program evolves.

Li et al. [40] show that error injection at higher levels of

abstraction does not easily model the impact of all lower-

level hardware errors. Similarly, Papadimitriou and Gizopou-

los [52] show that injecting errors in various SRAMhardware

structures gives different results compared to injecting errors

at higher levels of abstraction. AVGI [53] builds on [52] to

show that hardware errors manifest in software in different

ways, but result in similar distributions of final outcomes

across applications. Santos et al. [58] similarly examine how

faults injected at the RTL level affect common GPU instruc-

tions and inject these effects into applications at the software

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Keyur Joshi, Rahul Singh, Tommaso Bassetto, Sarita Adve, DarkoMarinov, and SasaMisailovic

level to provide overall outcome statistics and identify vul-

nerable hardware components. Unfortunately, such analysis

techniques that aim to efficiently determine the effect of low-

level faults throughhybrid fault injectionare too sloweven for

small program sizes when the outcomes are needed for each
error site for fine-grained software-based SDC protection. If

techniques such as AVGI become scalable for analyzing each

error site in the future, FastFlip might be able to use them.

Reliability analyses without error injection. ePVF [19]
is a dynamic analysis that finds locations where a bitflip will

cause a crash, as opposed to an SDC, with ∼ 90% accuracy.

TRIDENT [38] uses empirical observations of error propaga-

tion in programs to predict the overall SDC probability of a

program and the SDC probabilities of individual instructions.

Several other works [8, 44, 60] use analytical modeling to

detect SDCs in a program. Although these analyses can be

faster than error injection analyses, they are less accurate and

may not be able to accurately estimate the magnitude of the

output SDC due to an error. FastFlip’s compositional nature

makes error injection analysis more affordable by amortizing

the cost of analyzing evolving programs over time.

SDC propagation analyses. SDC propagation analyses ei-

ther propagate SDCs forward through programs [7, 9, 15,

21, 35], or propagate SDC bounds backward through pro-

grams [22, 47]. Although we used the Chisel [47] SDC propa-

gation analysis to evaluate FastFlip, it can use other analyses

that satisfy the conditions described in Section 4.8.

Mutlu et al. [50] predict the effect of bitflips injected into

iterative applications on the final output by analyzing the

effects of fault injections on a limited number of iterations.

While it may give an advantage over FastFlip for applications

that iterate the same operation multiple times, unlike Fast-

Flip, it cannot handle programs with multiple sections that

perform distinct operations, such as our benchmarks.

Hardware-based selective protection. Researchers have
examined the use of selective hardware hardening (e.g., via

redundancy or ECC) for improving hardware reliabilitywhile

limiting the use of additional chip area [14, 42, 55, 73]. These

techniques find and replicate only those hardware compo-

nents that, as a result of transient errors, produce unaccept-

able outcomes across the range of typical applications for that

hardware. FastFlip efficiently provides informationwhich can

be used to apply additional, software-based selective protec-
tion tailored for specific applications, as opposed to adding

further hardware protections irrelevant to other applications.

Software-based selective SDC protection. Unlike crashes,
timeouts, or clearly invalid data, SDCs aremore difficult to de-

tect by nature. SWIFT [56] uses instruction duplication to de-

tect errors in computational instructions. To reduce overhead,

it makes use of downtime in a program’s instruction schedule.

DRIFT [48] further reduces overhead by clustering the checks

of multiple duplicated instructions together to reduce basic

block fragmentation. SWIFT and DRIFT aim to completely
eliminate the possibility of SDCs occurring due to single

bitflip errors in the duplicated computational instructions.

nZDC [17] provides comparable overhead to SWIFT while

also protecting programs from99.6% of SDCs caused by single

bitflip errors during load, store, and control flow instructions.

Shoestring [20] finds and duplicates only particularly vul-

nerable instructions.Hari et al. [23] propose protecting blocks

of instructionswith single detectors placed at the end of loops

or function calls. These two techniques use the results of

error injection analyses to guide selective instruction dupli-

cation. Coarse-grained approaches place detectors at the task

level [1, 2, 25, 29, 72].Weconsider such techniques to be clients
of FastFlip. They can provide FastFlip with information about

the runtime overhead of protecting various instructions or

instruction blocks. In return, FastFlip can provide precise

information on which instructions should be protected in

order to minimize runtime overhead while protecting against

a developer-defined fraction of SDC-causing errors. After

these techniques protect FastFlip’s selection of instructions,

FastFlip can re-analyze the protected sections to confirm the

decrease in SDC vulnerability. For FastFlip, we focused on

efficiently handling programmodifications in general. Test-

ing code modifications specifically designed to reduce SDC

vulnerability is an interesting topic for future work.

Incremental program analysis. Incremental techniques

have a long history in improving the runtime of program anal-

yses that studycontrolflowequivalenceand /or complexheap

data structure properties, e.g., [26, 33, 36, 51, 62], orMLmodel

robustness [64, 65]. In contrast, FastFlip incrementally ana-

lyzes the impact of hardware errors on the programexecution,

which are beyond the scope of off-the-shelf incremental tech-

niques that operate on coarser-grained program properties.

9 Conclusion
Wepresented FastFlip, the first systematic approach that com-

bines error injection and SDC propagation analyses to enable

fast error injection analysis of evolving programs. When de-

velopersmodify the program, FastFlip’s compositional nature

allows it to selectively re-analyze only the modified code sec-

tions, making it 3.2× faster on average (geomean) and up to

17.2× faster compared to a baseline non-compositional anal-

ysis that re-analyzes the whole program. Additionally, the

value andcost of protectingFastFlip’s selectionof instructions

closely track that of the baseline analysis.

FastFlip can reduce the burden of repeated error injection

analysis whenever developers fix program bugs, add opti-

mizations, and add protections for vulnerable instructions.

FastFlip therefore represents the first step toward including

resiliency analysis and hardening as first-class citizens in the

standard software development workflow, which continually

compiles and tests software after each code modification.

Acknowledgments
The research in this paperwas supported inpart byNSFgrants

CCF-1846354, CCF-1956374, and CCF-2217144.

FastFlip: Compositional SDC Resiliency Analysis CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

References
[1] Sara Achour and Martin C. Rinard. 2015. Approximate computation

with outlier detection inTopaz. In Proceedings of the 2015ACMSIGPLAN
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (Pittsburgh, PA, USA) (OOPSLA 2015).
711–730. https://doi.org/10.1145/2814270.2814314

[2] P. Agrawal. 1988. Fault tolerance in multiprocessor systems without

dedicated redundancy. IEEE Trans. Comput. 37, 3 (1988), 358–362.

https://doi.org/10.1109/12.2174
[3] Abdulkareem Alali, Huzefa Kagdi, and Jonathan I. Maletic. 2008.

What’s a Typical Commit? ACharacterization of Open Source Software

Repositories. In 2008 16th IEEE International Conference on Program
Comprehension. 182–191. https://doi.org/10.1109/ICPC.2008.24

[4] Rizwan A. Ashraf, Roberto Gioiosa, Gokcen Kestor, Ronald F. DeMara,

Chen-Yong Cher, and Pradip Bose. 2015. Understanding the propaga-

tion of transient errors in HPC applications. In SC ’15: Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis. 1–12. https://doi.org/10.1145/2807591.2807670

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.

The PARSEC benchmark suite: characterization and architectural

implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (Toronto, Ontario,
Canada) (PACT ’08). 72–81. https://doi.org/10.1145/1454115.1454128

[6] S. Borkar. 2005. Designing reliable systems fromunreliable components:

the challenges of transistor variability and degradation. IEEE Micro
25, 6 (2005), 10–16. https://doi.org/10.1109/MM.2005.110

[7] James Bornholt, Todd Mytkowicz, and Kathryn S. McKinley. 2014.

Uncertain<T>: a first-order type for uncertain data. In Proceedings
of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (Salt Lake City, Utah,
USA) (ASPLOS ’14). 51–66. https://doi.org/10.1145/2541940.2541958

[8] Brett Boston, Zoe Gong, and Michael Carbin. 2018. Leto: verifying

application-specific hardware fault tolerance with programmable

execution models. Proc. ACM Program. Lang. 2, OOPSLA, Article 163
(Oct. 2018), 30 pages. https://doi.org/10.1145/3276533

[9] Brett Boston, Adrian Sampson, Dan Grossman, and Luis Ceze.

2015. Probability type inference for flexible approximate pro-

gramming. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages,
and Applications (Pittsburgh, PA, USA) (OOPSLA 2015). 470–487.
https://doi.org/10.1145/2814270.2814301

[10] DanG. Cacuci andMihaela Ionescu-Bujor. 2004. AComparative Review

of Sensitivity and Uncertainty Analysis of Large-Scale Systems—II:

Statistical Methods. Nuclear Science and Engineering 147, 3 (2004),

204–217. https://doi.org/10.13182/04-54CR
[11] Jon Calhoun, Luke Olson, and Marc Snir. 2014. FlipIt: An LLVM Based

Fault Injector for HPC. In Revised Selected Papers, Part I, of the Euro-Par
2014 International Workshops on Parallel Processing - Volume 8805.
547–558. https://doi.org/10.1007/978-3-319-14325-5_47

[12] Chun-Kai Chang, Sangkug Lym, Nicholas Kelly, Michael B. Sullivan,

and Mattan Erez. 2018. Hamartia: A Fast and Accurate Error Injection

Framework. In 2018 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W). 101–108.
https://doi.org/10.1109/DSN-W.2018.00046

[13] Swarat Chaudhuri, Sumit Gulwani, Roberto Lublinerman, and Sara

Navidpour. 2011. Proving programs robust. In Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering (Szeged, Hungary) (ESEC/FSE ’11).
102–112. https://doi.org/10.1145/2025113.2025131

[14] Josie E. Rodriguez Condia, Paolo Rech, Fernando Fernandes dos Santos,

LuigiCarrot, andMatteo SonzaReorda. 2021. ProtectingGPU’sMicroar-

chitectural Vulnerabilities via Effective Selective Hardening. In 2021
IEEE27th International SymposiumonOn-LineTestingandRobust System
Design (IOLTS). 1–7. https://doi.org/10.1109/IOLTS52814.2021.9486703

[15] Eva Darulova, Anastasiia Izycheva, Fariha Nasir, Fabian Ritter, Heiko

Becker, and Robert Bastian. 2018. Daisy - Framework for Analysis

and Optimization of Numerical Programs (Tool Paper). In Tools and
Algorithms for the Construction and Analysis of Systems. 270–287.

[16] Eva Darulova and Viktor Kuncak. 2014. Sound compilation of reals. In

Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (San Diego, California, USA) (POPL ’14).
235–248. https://doi.org/10.1145/2535838.2535874

[17] Moslem Didehban and Aviral Shrivastava. 2016. nZDC: A com-

piler technique for near Zero Silent Data Corruption. In 2016
53nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6.
https://doi.org/10.1145/2897937.2898054

[18] WaleedDweik,MuraliAnnavaram,andMichelDubois. 2014. Reliability-

Aware Exceptions: Tolerating intermittent faults in microprocessor

array structures. In 2014 Design, Automation&Test in Europe Conference
& Exhibition (DATE). 1–6. https://doi.org/10.7873/DATE.2014.114

[19] Bo Fang, Qining Lu, Karthik Pattabiraman, Matei Ripeanu, and Sud-

hanva Gurumurthi. 2016. ePVF: An Enhanced Program Vulnerability

Factor Methodology for Cross-Layer Resilience Analysis. In 2016 46th
Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN). 168–179. https://doi.org/10.1109/DSN.2016.24

[20] Shuguang Feng, Shantanu Gupta, Amin Ansari, and Scott Mahlke.

2010. Shoestring: probabilistic soft error reliability on the cheap.

In Proceedings of the Fifteenth International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems (Pittsburgh, Pennsylvania, USA) (ASPLOS XV). 385–396.
https://doi.org/10.1145/1736020.1736063

[21] Vimuth Fernando, Keyur Joshi, Jacob Laurel, and Sasa Misailovic.

2023. Diamont: dynamic monitoring of uncertainty for distributed

asynchronous programs. Int. J. Softw. Tools Technol. Transf. 25, 4 (Nov.
2023), 521–539. https://doi.org/10.1007/s10009-023-00717-y

[22] Vimuth Fernando, Keyur Joshi, and Sasa Misailovic. 2019. Verifying

safety and accuracy of approximate parallel programs via canonical

sequentialization. Proc. ACM Program. Lang. 3, OOPSLA, Article 119
(Oct. 2019), 29 pages. https://doi.org/10.1145/3360545

[23] Siva Kumar Sastry Hari, Sarita V. Adve, and Helia Naeimi. 2012.

Low-cost program-level detectors for reducing silent data corruptions.

In IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2012). 1–12. https://doi.org/10.1109/DSN.2012.6263960

[24] Siva Kumar Sastry Hari, Sarita V. Adve, Helia Naeimi, and Pradeep

Ramachandran. 2012. Relyzer: exploiting application-level fault equiva-

lence to analyze application resiliency to transient faults. In Proceedings
of the Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems (London, England,
UK) (ASPLOS XVII). 123–134. https://doi.org/10.1145/2150976.2150990

[25] Hukerikar and Engelmann. 2017. Resilience Design Patterns: A Struc-

tured Approach to Resilience at Extreme Scale. Supercomput. Front.
Innov.: Int. J. 4, 3 (Sept. 2017), 4–42. https://doi.org/10.14529/jsfi170301

[26] Kenneth Johnson, Radu Calinescu, and Shinji Kikuchi. 2013. An incre-

mental verification framework for component-based software systems.

In Proceedings of the 16th International ACM Sigsoft Symposium on
Component-Based Software Engineering (Vancouver, British Columbia,

Canada) (CBSE ’13). 33–42. https://doi.org/10.1145/2465449.2465456
[27] Keyur Joshi. 2024. Compositional Analysis of the Effects of Uncer-

tainty on Computations. PhD dissertation. University of Illinois,

Urbana-Champaign. Available at https://hdl.handle.net/2142/124160.
[28] Keyur Joshi, Vimuth Fernando, and Sasa Misailovic. 2019. Statistical

Algorithmic Profiling for Randomized Approximate Programs. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE).
608–618. https://doi.org/10.1109/ICSE.2019.00071

[29] Keyur Joshi, Vimuth Fernando, and Sasa Misailovic. 2020. Aloe:

verifying reliability of approximate programs in the presence of

recoverymechanisms. InProceedings of the 18thACM/IEEE International
Symposium on Code Generation and Optimization (San Diego, CA, USA)

https://doi.org/10.1145/2814270.2814314
https://doi.org/10.1109/12.2174
https://doi.org/10.1109/ICPC.2008.24
https://doi.org/10.1145/2807591.2807670
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1109/MM.2005.110
https://doi.org/10.1145/2541940.2541958
https://doi.org/10.1145/3276533
https://doi.org/10.1145/2814270.2814301
https://doi.org/10.13182/04-54CR
https://doi.org/10.1007/978-3-319-14325-5_47
https://doi.org/10.1109/DSN-W.2018.00046
https://doi.org/10.1145/2025113.2025131
https://doi.org/10.1109/IOLTS52814.2021.9486703
https://doi.org/10.1145/2535838.2535874
https://doi.org/10.1145/2897937.2898054
https://doi.org/10.7873/DATE.2014.114
https://doi.org/10.1109/DSN.2016.24
https://doi.org/10.1145/1736020.1736063
https://doi.org/10.1007/s10009-023-00717-y
https://doi.org/10.1145/3360545
https://doi.org/10.1109/DSN.2012.6263960
https://doi.org/10.1145/2150976.2150990
https://doi.org/10.14529/jsfi170301
https://doi.org/10.1145/2465449.2465456
https://hdl.handle.net/2142/124160
https://doi.org/10.1109/ICSE.2019.00071

CGO ’25, March 01–05, 2025, Las Vegas, NV, USA Keyur Joshi, Rahul Singh, Tommaso Bassetto, Sarita Adve, DarkoMarinov, and SasaMisailovic

(CGO ’20). 56–67. https://doi.org/10.1145/3368826.3377924
[30] Manolis Kaliorakis, Dimitris Gizopoulos, Ramon Canal, and Antonio

Gonzalez. 2017. MeRLiN: Exploiting dynamic instruction behavior

for fast and accurate microarchitecture level reliability assessment.

In 2017 ACM/IEEE 44th Annual International Symposium on Computer
Architecture (ISCA). 241–254. https://doi.org/10.1145/3079856.3080225

[31] Manolis Kaliorakis, Sotiris Tselonis, Athanasios Chatzidimitriou,

Nikos Foutris, and Dimitris Gizopoulos. 2015. Differential Fault

Injection on Microarchitectural Simulators. In 2015 IEEE In-
ternational Symposium on Workload Characterization. 172–182.

https://doi.org/10.1109/IISWC.2015.28
[32] Daya Shanker Khudia and Scott Mahlke. 2014. Harnessing Soft

Computations for Low-Budget Fault Tolerance. In 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture. 319–330.
https://doi.org/10.1109/MICRO.2014.33

[33] Y. Lakhnech, S. Bensalem, S. Berezin, and S. Owre. 2001. Incremental

Verification by Abstraction. In Tools and Algorithms for the Construction
and Analysis of Systems. 98–112.

[34] Jacob Laurel, Siyuan Brant Qian, Gagandeep Singh, and SasaMisailovic.

2023. Synthesizing Precise Static Analyzers for Automatic Differen-

tiation. Proc. ACM Program. Lang. 7, OOPSLA2, Article 291 (Oct. 2023),
29 pages. https://doi.org/10.1145/3622867

[35] Jacob Laurel, Rem Yang, Gagandeep Singh, and Sasa Misailovic. 2022.

A dual number abstraction for static analysis of Clarke Jacobians.

Proc. ACM Program. Lang. 6, POPL, Article 56 (Jan. 2022), 30 pages.

https://doi.org/10.1145/3498718
[36] Steven Lauterburg, Ahmed Sobeih, Darko Marinov, and Mahesh

Viswanathan. 2008. Incremental state-space exploration for

programs with dynamically allocated data. In 2008 ACM/IEEE
30th International Conference on Software Engineering. 291–300.

https://doi.org/10.1145/1368088.1368128
[37] Guanpeng Li and Karthik Pattabiraman. 2018. Modeling Input-

Dependent Error Propagation in Programs. In 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). 279–290. https://doi.org/10.1109/DSN.2018.00038

[38] Guanpeng Li, Karthik Pattabiraman, Siva Kumar Sastry Hari,

Michael Sullivan, and Timothy Tsai. 2018. Modeling Soft-Error

Propagation in Programs. In 2018 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 27–38.

https://doi.org/10.1109/DSN.2018.00016
[39] Jianli Li and Qingping Tan. 2013. SmartInjector: Exploiting intelligent

fault injection for SDC rate analysis. In 2013 IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFTS). 236–242. https://doi.org/10.1109/DFT.2013.6653612

[40] Man-Lap Li, PradeepRamachandran, UlyaR. Karpuzcu, SivaKumar Sas-

try Hari, and Sarita V. Adve. 2009. Accurate microarchitecture-level

fault modeling for studying hardware faults. In 2009 IEEE 15th
International Symposium on High Performance Computer Architecture.
105–116. https://doi.org/10.1109/HPCA.2009.4798242

[41] Xiaodong Li, Sarita V. Adve, Pradip Bose, and Jude A. Rivers. 2008.

Online Estimation of Architectural Vulnerability Factor for Soft Errors.

In 2008 International Symposium on Computer Architecture. 341–352.
https://doi.org/10.1109/ISCA.2008.9

[42] F. Libano, B. Wilson, J. Anderson, M. J. Wirthlin, C. Cazzaniga, C.

Frost, and P. Rech. 2019. Selective Hardening for Neural Networks

in FPGAs. IEEE Transactions on Nuclear Science 66, 1 (2019), 216–222.
https://doi.org/10.1109/TNS.2018.2884460

[43] Qining Lu, Mostafa Farahani, Jiesheng Wei, Anna Thomas, and

Karthik Pattabiraman. 2015. LLFI: An Intermediate Code-Level

Fault Injection Tool for Hardware Faults. In 2015 IEEE International
Conference on Software Quality, Reliability and Security. 11–16.

https://doi.org/10.1109/QRS.2015.13
[44] Qining Lu, Guanpeng Li, Karthik Pattabiraman, Meeta S. Gupta, and

Jude A. Rivers. 2017. Configurable Detection of SDC-causing Errors

in Programs. ACM Trans. Embed. Comput. Syst. 16, 3, Article 88 (March

2017), 25 pages. https://doi.org/10.1145/3014586
[45] Abdulrahman Mahmoud, Radha Venkatagiri, Khalique Ahmed, Sasa

Misailovic, Darko Marinov, Christopher W. Fletcher, and Sarita V.

Adve. 2019. Minotaur: Adapting Software Testing Techniques for

Hardware Errors. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems (Providence, RI, USA) (ASPLOS ’19). 1087–1103.
https://doi.org/10.1145/3297858.3304050

[46] Kaisa Miettinen. 1998. A Priori Methods. 115–129. https:
//doi.org/10.1007/978-1-4615-5563-6_5

[47] Sasa Misailovic, Michael Carbin, Sara Achour, Zichao Qi, and Martin C.

Rinard. 2014. Chisel: reliability- and accuracy-aware optimization of

approximate computational kernels. In Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Systems
Languages & Applications (Portland, Oregon, USA) (OOPSLA ’14).
309–328. https://doi.org/10.1145/2660193.2660231

[48] KonstantinaMitropoulou,Vasileios Porpodas, andMarceloCintra. 2014.

DRIFT: Decoupled CompileR-Based Instruction-Level Fault-Tolerance.

In Languages and Compilers for Parallel Computing. 217–233.
[49] Alain Mosnier. 2023. SHA-2 algorithm implementations.

https://github.com/amosnier/sha-2.
[50] Burcu O. Mutlu, Gokcen Kestor, Adrian Cristal, Osman Unsal, and

Sriram Krishnamoorthy. 2019. Ground-Truth Prediction to Accelerate

Soft-Error Impact Analysis for Iterative Methods. In 2019 IEEE 26th
International Conference on High Performance Computing, Data, and
Analytics (HiPC). 333–344. https://doi.org/10.1109/HiPC.2019.00048

[51] Peter W. O’Hearn. 2018. Continuous Reasoning: Scaling the impact

of formal methods. In Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science (Oxford, United Kingdom)

(LICS ’18). 13–25. https://doi.org/10.1145/3209108.3209109
[52] George Papadimitriou and Dimitris Gizopoulos. 2021. Demys-

tifying the System Vulnerability Stack: Transient Fault Effects

Across the Layers. In 2021 ACM/IEEE 48th Annual Interna-
tional Symposium on Computer Architecture (ISCA). 902–915.

https://doi.org/10.1109/ISCA52012.2021.00075
[53] George Papadimitriou and Dimitris Gizopoulos. 2023. AVGI:

Microarchitecture-Driven, Fast and Accurate Vulnerabil-

ity Assessment. In 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). 935–948.

https://doi.org/10.1109/HPCA56546.2023.10071105
[54] Konstantinos Parasyris, Georgios Tziantzoulis, Christos D. Antonopou-

los, and Nikolaos Bellas. 2014. GemFI: A Fault Injection Tool for

Studying the Behavior of Applications on Unreliable Substrates. In

2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. 622–629. https://doi.org/10.1109/DSN.2014.96

[55] Ilia Polian and John P. Hayes. 2011. Selective Hardening: Toward

Cost-Effective Error Tolerance. IEEE Design & Test of Computers 28,
3 (2011), 54–63. https://doi.org/10.1109/MDT.2010.120

[56] G.A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D.I. August.

2005. SWIFT: software implemented fault tolerance. In Interna-
tional Symposium on Code Generation and Optimization. 243–254.
https://doi.org/10.1109/CGO.2005.34

[57] Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto

Ros. 2016. Splash-3: A properly synchronized benchmark suite for

contemporary research. In 2016 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). 101–111.
https://doi.org/10.1109/ISPASS.2016.7482078

[58] Fernando F. dos Santos, Josie E. Rodriguez Condia, Luigi Carro,

Matteo Sonza Reorda, and Paolo Rech. 2021. Revealing GPUs

Vulnerabilities by Combining Register-Transfer and Software-

Level Fault Injection. In 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 292–304.
https://doi.org/10.1109/DSN48987.2021.00042

https://doi.org/10.1145/3368826.3377924
https://doi.org/10.1145/3079856.3080225
https://doi.org/10.1109/IISWC.2015.28
https://doi.org/10.1109/MICRO.2014.33
https://doi.org/10.1145/3622867
https://doi.org/10.1145/3498718
https://doi.org/10.1145/1368088.1368128
https://doi.org/10.1109/DSN.2018.00038
https://doi.org/10.1109/DSN.2018.00016
https://doi.org/10.1109/DFT.2013.6653612
https://doi.org/10.1109/HPCA.2009.4798242
https://doi.org/10.1109/ISCA.2008.9
https://doi.org/10.1109/TNS.2018.2884460
https://doi.org/10.1109/QRS.2015.13
https://doi.org/10.1145/3014586
https://doi.org/10.1145/3297858.3304050
https://doi.org/10.1007/978-1-4615-5563-6_5
https://doi.org/10.1007/978-1-4615-5563-6_5
https://doi.org/10.1145/2660193.2660231
https://github.com/amosnier/sha-2
https://doi.org/10.1109/HiPC.2019.00048
https://doi.org/10.1145/3209108.3209109
https://doi.org/10.1109/ISCA52012.2021.00075
https://doi.org/10.1109/HPCA56546.2023.10071105
https://doi.org/10.1109/DSN.2014.96
https://doi.org/10.1109/MDT.2010.120
https://doi.org/10.1109/CGO.2005.34
https://doi.org/10.1109/ISPASS.2016.7482078
https://doi.org/10.1109/DSN48987.2021.00042

FastFlip: Compositional SDC Resiliency Analysis CGO ’25, March 01–05, 2025, Las Vegas, NV, USA

[59] Horst Schirmeier, Martin Hoffmann, Christian Dietrich, Michael

Lenz, Daniel Lohmann, and Olaf Spinczyk. 2015. FAIL*: An Open

and Versatile Fault-Injection Framework for the Assessment of

Software-Implemented Hardware Fault Tolerance. In 2015 11th
European Dependable Computing Conference (EDCC). 245–255.

https://doi.org/10.1109/EDCC.2015.28
[60] Vilas Sridharan and David R. Kaeli. 2009. Eliminating microarchitec-

tural dependency fromArchitectural Vulnerability. In 2009 IEEE 15th
International Symposium on High Performance Computer Architecture.
117–128. https://doi.org/10.1109/HPCA.2009.4798243

[61] Phillip Stanley-Marbell, Armin Alaghi, Michael Carbin, Eva Darulova,

Lara Dolecek, Andreas Gerstlauer, Ghayoor Gillani, Djordje Jevdjic,

Thierry Moreau, Mattia Cacciotti, Alexandros Daglis, Natalie Enright

Jerger, Babak Falsafi, Sasa Misailovic, Adrian Sampson, and Damien

Zufferey. 2020. Exploiting Errors for Efficiency: A Survey from Circuits

to Applications. ACM Comput. Surv. 53, 3, Article 51 (June 2020),

39 pages. https://doi.org/10.1145/3394898
[62] Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan. 2021.

Demanded abstract interpretation. In Proceedings of the 42nd ACM
SIGPLAN International Conference on Programming Language De-
sign and Implementation (Virtual, Canada) (PLDI 2021). 282–295.
https://doi.org/10.1145/3453483.3454044

[63] Anna Thomas and Karthik Pattabiraman. 2013. Error detector

placement for soft computation. In 2013 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
1–12. https://doi.org/10.1109/DSN.2013.6575353

[64] Shubham Ugare, Debangshu Banerjee, Sasa Misailovic, and Gagandeep

Singh. 2023. Incremental Verification of Neural Networks. Proc.
ACM Program. Lang. 7, PLDI, Article 185 (June 2023), 26 pages.

https://doi.org/10.1145/3591299
[65] Shubham Ugare, Gagandeep Singh, and Sasa Misailovic. 2022. Proof

transfer for fast certification of multiple approximate neural networks.

Proc. ACMProgram. Lang. 6, OOPSLA1, Article 75 (April 2022), 29 pages.

https://doi.org/10.1145/3527319
[66] Radha Venkatagiri, Khalique Ahmed, Abdulrahman Mahmoud, Sasa

Misailovic, DarkoMarinov, ChristopherW. Fletcher, and Sarita V. Adve.

2019. gem5-Approxilyzer: An Open-Source Tool for Application-Level

Soft Error Analysis. In 2019 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). 214–221.
https://doi.org/10.1109/DSN.2019.00033

[67] Radha Venkatagiri, Abdulrahman Mahmoud, Siva Kumar Sastry

Hari, and Sarita V. Adve. 2016. Approxilyzer: Towards a systematic

framework for instruction-level approximate computing and its

application to hardware resiliency. In 2016 49th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 1–14.

https://doi.org/10.1109/MICRO.2016.7783745
[68] Shaobu Wang, Guangyan Zhang, Junyu Wei, Yang Wang, Jiesheng

Wu, and Qingchao Luo. 2023. Understanding Silent Data Corruptions

in a Large Production CPU Population. In Proceedings of the 29th
Symposium on Operating Systems Principles (Koblenz, Germany) (SOSP
’23). 216–230. https://doi.org/10.1145/3600006.3613149

[69] Wikipedia. 2024. Continuous Integration. https://en.wikipedia.org/
wiki/Continuous_integration.

[70] Graham R Wood and BP Zhang. 1996. Estimation of the Lipschitz

constant of a function. Journal of Global Optimization 8 (1996), 91–103.
[71] Yuan Yao. 2023. CAVA: Camera Vision Pipeline on gem5-Aladdin.

https://github.com/yaoyuannnn/cava.
[72] A. Ziv and J. Bruck. 1997. Performance optimization of checkpointing

schemes with task duplication. IEEE Trans. Comput. 46, 12 (1997),

1381–1386. https://doi.org/10.1109/12.641939
[73] Christian G. Zoellin, Hans-JoachimWunderlich, Ilia Polian, and Bernd

Becker. 2008. SelectiveHardening inEarlyDesign Steps. In 2008 13th Eu-
ropean Test Symposium. 185–190. https://doi.org/10.1109/ETS.2008.30

Received 2024-09-11; accepted 2024-11-04

https://doi.org/10.1109/EDCC.2015.28
https://doi.org/10.1109/HPCA.2009.4798243
https://doi.org/10.1145/3394898
https://doi.org/10.1145/3453483.3454044
https://doi.org/10.1109/DSN.2013.6575353
https://doi.org/10.1145/3591299
https://doi.org/10.1145/3527319
https://doi.org/10.1109/DSN.2019.00033
https://doi.org/10.1109/MICRO.2016.7783745
https://doi.org/10.1145/3600006.3613149
https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_integration
https://github.com/yaoyuannnn/cava
https://doi.org/10.1109/12.641939
https://doi.org/10.1109/ETS.2008.30

	Abstract
	1 Introduction
	2 Background
	2.1 Error Injection Analyses
	2.2 SDC Propagation Analyses

	3 Example
	3.1 FastFlip Analysis
	3.2 FastFlip Results

	4 The FastFlip Approach
	4.1 Preliminaries
	4.2 Error Injection Analysis of Program Sections
	4.3 SDC Propagation Analysis in Program Sections
	4.4 End-to-End SDC Propagation Analysis
	4.5 Calculating Value of Protecting Static Instructions
	4.6 Finding an Optimal Set of Instructions to Protect
	4.7 Composability
	4.8 Characteristics of Compatible Sub-Analyses
	4.9 Factors That Affect the Precision of FastFlip
	4.10 Adapting and Compensating for Loss of Precision

	5 Methodology
	5.1 Choice of Sub-Analyses
	5.2 Error Model
	5.3 SDC Detection Model
	5.4 Benchmarks
	5.5 Code Modifications for Benchmarks
	5.6 Baseline, Comparison, and Experimental Setup

	6 Evaluation
	6.1 Utility of FastFlip vs. Approxilyzer
	6.2 Performance of FastFlip vs. Approxilyzer
	6.3 Effects of Target Value Adjustment
	6.4 Ignoring Acceptably Small SDCs

	7 Limitations
	8 Related Work
	9 Conclusion
	References

