
Appendix - Aloe: Verifying Reliability of Approximate
Programs in the Presence of Recovery Mechanisms

KEYUR JOSHI, University of Illinois at Urbana-Champaign, USA

VIMUTH FERNANDO, University of Illinois at Urbana-Champaign, USA

SASA MISAILOVIC, University of Illinois at Urbana-Champaign, USA

Modern hardware is becoming increasingly susceptible to silent data corruptions. As general methods for

detection and recovery from errors are time and energy consuming, selective detection and recovery are

promising alternatives for applications that have the freedom to produce results with a variable level of

accuracy. Several programming languages have provided specialized constructs for expressing detection and

recovery operations, but the existing static analyses of safety and quantitative analyses of programs do not

have the proper support for such language constructs.

This work presents Aloe, a quantitative static analysis of reliability of programs with recovery blocks – a

construct that checks for errors, and if necessary, applies the corresponding recovery strategy. The analysis

supports reasoning about both reliable and potentially unreliable detection and recovery mechanisms. It

implements a novel precondition generator for recovery blocks, built on top of Rely, a state-of-the-art quan-

titative reliability analysis for imperative programs. Aloe can reason about programs with scalar and array

expressions, if-then-else conditionals, and bounded loops without early exits. The analyzed computation is

idempotent and the recovery code re-executes the original computation.

We implemented Aloe and applied it to a set of eight programs previously used in approximate computing

research. Our results present significantly higher reliability and scale better compared to the existing Rely

analysis. Moreover, the end-to-end accuracy of the verified computations exhibits only small accuracy losses.

CCS Concepts: • Theory of computation→ Program specifications; Program verification.

Additional Key Words and Phrases: Reliability, Approximate Computing

ACM Reference Format:
Keyur Joshi, Vimuth Fernando, and Sasa Misailovic. 2020. Appendix - Aloe: Verifying Reliability of Approxi-

mate Programs in the Presence of Recovery Mechanisms. In Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization (CGO ’20), February 22–26, 2020, San Diego, CA, USA. ACM,

New York, NY, USA, 7 pages. https://doi.org/10.1145/3368826.3377924

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

CGO ’20, February 22–26, 2020, San Diego, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7047-9/20/02. . . $15.00

https://doi.org/10.1145/3368826.3377924

1

https://doi.org/10.1145/3368826.3377924
https://doi.org/10.1145/3368826.3377924

2 Keyur Joshi, Vimuth Fernando, and Sasa Misailovic

n ∈ N quantities
m ∈ N∪F values
r ∈ [0, 1.0] probability
x,b ∈ Var variables
a ∈ ArrVar array variables
f ∈ Func external functions
op ∈ {+,−, ... } arithmetic operators

Exp → m | x | f (Exp∗) | expressions
(Exp) | Exp op Exp

t → int<n> | float<n> basic types
D → t x | t a[n+] | variable

D;D declarations

P → D;S program

recovery→

redo[n] redo up to n times
| redo[ψ] redo on different reliability model
| S other (custom) recovery

S →

skip empty program
| x = Exp assignment
| x = Exp [r] Exp probabilistic choice
| S;S sequence
| x = a[Exp+] array load
| a[Exp+] = Exp array store
| if Exp {S } else {S } branching
| repeat n {S} repeat n times
| x = (T)Exp cast
| try {S} check {Exp} recover {recovery} try-check-recover

Fig. 1. Syntax

APPENDIX A
In this appendix we present the full semantics for our language. This language consists of the

sequential subset from [3].

1 DEFINITIONS
Figure 1 shows the syntax of the language. In this section we define key terms and the key definitions.

References. A reference is a pair ⟨nb ,⟨n1,...,nk ⟩⟩ ∈Ref that consists of a base address nb ∈Loc
and a dimension descriptor ⟨n1, ...,nk ⟩. References describe the location and the dimension of

variables in the heap.

Frames, Stacks, and Heaps. A frame σ is an element of the domain E=Var→Ref which is the

set of finite maps from program variables to references. A heap h ∈H =N→N∪F is a finite map

from addresses (integers) to values. Values can be integers or floats. An environment ϵ ∈E×H is a

pair of a frame and a heap.

Programs. An approximated program executes within approximation model,ψ , which in general
may contain the parameters for approximation (e.g., probability of selecting original or approx-

imate expression). We define special reliable model 1ψ , which evaluates the program without

approximations.

Language Semantics. Figure 2 defines the semantics for expressions. Figures 3 and 4 define the

semantics for statements.

Statements. The small-step relation ⟨s,σ ,h⟩
λ,p

−→ψ ⟨s ′,σ ′,h′⟩ defines the program evaluating in

a stack frame σ , and heap h with the transition label λ. The semantics of Aloe follow from Rely.

A transition label λ∈ {C,F} characterizes whether an error occurred (F) or not (C).

, Vol. 1, No. 1, Article . Publication date: January 2020.

Appendix - Aloe: Verifying Reliability of Approximate Programs in the Presence of Recovery Mechanisms 3

E-Var-C

⟨nb, ⟨1⟩⟩=σ (x)

⟨x,σ ,h ⟩⇁ψ ⟨h(nb),σ ,h ⟩

E-Var-F

⟨nb, ⟨1⟩⟩=σ (x)

⟨x,σ ,h ⟩ 1

⇁ψ ⟨nf ,σ ,h ⟩

E-Iop-R1

⟨e1,σ ,h ⟩
p

⇁ψ ⟨e′
1
,σ ,h ⟩

⟨e1 op e2,σ ,h ⟩
p

⇁ψ ⟨e′
1
op e2,σ ,h ⟩

E-Iop-R2

⟨e2,σ ,h ⟩
p

⇁ψ ⟨e′
2
,σ ,h ⟩

⟨n op e2,σ ,h ⟩
p

⇁ψ ⟨n op e′
2
,σ ,h ⟩

E-Iop-C

⟨n1 op n2,σ ,h ⟩
1

⇁ψ ⟨op(n1,n2),σ ,h ⟩

Fig. 2. Dynamic Semantics of Expressions
Dec-Var

⟨nb,h
′⟩=new(h, ⟨1⟩)

⟨T x,σ ::σ ,h ⟩ C,1
⇁ψ ⟨skip,σ [x 7→ ⟨nb, ⟨1⟩⟩] ::σ ,h

′⟩

Dec-Array

∀i .0<ni ⟨nb,h
′⟩=new(h, ⟨n1 ...nk ⟩) σ ′=σ [x 7→ ⟨nb, ⟨n1 ..nk ⟩⟩]

⟨T x[n1 ...nk],σ ,h ⟩
C,1
⇁ψ ⟨skip,σ ′,h′⟩

Fig. 3. Semantics of Declarations

, Vol. 1, No. 1, Article . Publication date: January 2020.

4 Keyur Joshi, Vimuth Fernando, and Sasa Misailovic

S-Assign-R

⟨e,σ ,h ⟩
p

⇁ψ ⟨e ′,σ ,h ⟩

⟨x = e,σ ,h ⟩
C,p
−→ψ ⟨x = e ′,σ ,h ⟩

S-Assign-C

⟨nb , ⟨1⟩⟩=σ (x)

⟨x = n,σ ,h ⟩
C,1
−→ψ ⟨skip,σ ,h[nb 7→n]⟩

S-Assign-Prob-True

⟨x = e1 [r] e2,σ ,h ⟩
C,r
−→ψ ⟨x = e1,σ ,h ⟩

S-Assign-Prob-False

⟨x = e1 [r] e2,σ ,h ⟩
F ,1−r
−→ψ ⟨x = e2,σ ,h ⟩

S-Assign-Approx-True

⟨l, ⟨1⟩⟩=σ (b) h[l],0

⟨x = e1 [b] e2,σ ,h ⟩
C,1
−→ψ ⟨x = e1,σ ,h ⟩

S-Assign-Approx-True

⟨l, ⟨1⟩⟩=σ (b) h[l]=0

⟨x = e1 [b] e2,σ ,h ⟩
C,1
−→ψ ⟨x = e2,σ ,h ⟩

S-Seq-R1

⟨s1,σ ,h ⟩
λ,p
−→ψ ⟨s ′

1
,σ ′,h′⟩

⟨s1;s2,σ ,h ⟩
λ,p
−→ψ ⟨s ′

1
;s2,σ ′,h′⟩

S-Seq-R2

⟨skip;s2,σ ,h ⟩
C,1
−→ψ ⟨s2,σ ,h ⟩

S-If

⟨e,σ ,h ⟩
p

⇁ψ ⟨e ′,σ ,h ⟩

⟨if e {s1} else {s2},σ ,h ⟩
C,1
−→ψ ⟨if e ′ {s1} else {s2},σ ,h ⟩

S-If-True

n,0

⟨if n {s1} else {s2},σ ,h ⟩
C,1
−→ψ ⟨s1,σ ,h ⟩

S-If-False

n=0

⟨if n {s1} else {s2},σ ,h ⟩
C,1
−→ψ ⟨s2,σ ,h ⟩

S-Array-Load-Idx

⟨ei ,σ ,h ⟩
p

⇁ψ ⟨e ′i ,σ ,h ⟩

⟨x = a[n1, ...,ei , ...,ek],σ ,h ⟩
C,p
−→ψ ⟨x = a[n1, ...,e ′i , ...,ek],σ ,h ⟩

S-Array-Load-C

⟨nb , ⟨l1, ...,lk ⟩⟩=σ (x) no = lk +Σk−1i=0 ni ·li n=h(nb +no)

⟨x = a[n1, ...,nk],σ ,h ⟩
C,p
−→ψ ⟨x = n,σ ,h ⟩

S-Array-Store-Idx

⟨ei ,σ ,h ⟩
p

⇁ψ ⟨e ′i ,σ ,h ⟩

⟨a[n1, ...,ei , ...,ek] = x,σ ,h ⟩
C,p
−→ψ ⟨a[n1, ...,e ′i , ...,ek] = x,σ ,h ⟩

S-Array-Store-C

⟨nb , ⟨l1, ...,lk ⟩⟩=σ (x) no = lk +Σk−1i=0 ni ·li
⟨n′

b , ⟨1⟩⟩=σ (x) h[n′
b]=v ψ (wr(m))=1

⟨a[n1, ...,nk] = x,σ ,h ⟩
C,1
−→ψ ⟨skip,σ ,h[(nb +no) 7→v]⟩

S-Try

⟨S1,σ ,h ⟩
λ,r

−→ψ ⟨S1′,σ ′,h′⟩

⟨try {S1} check {e} recover {S2},σ ,h ⟩
λ,r

−→ψ ⟨try {S1’} check {e} recover {S2},σ ′,h′⟩

S-Check-1

⟨e,σ ,h ⟩ r
⇁ψ ⟨e ′,σ ,h ⟩

⟨try {skip} check {e} recover {S2},σ ,h ⟩
C,r
−→ψ ⟨try {skip} check {e’} recover {S2},σ ,h ⟩

S-Check-True

⟨try {skip} check {true} recover {S2},σ ,h ⟩
C,1
−→ψ ⟨skip,σ ,h ⟩

S-Check-False

⟨try {skip} check {false} recover {S2},σ ,h ⟩
C,1
−→ψ ⟨S2,σ ,h ⟩

Fig. 4. Semantics of Statements

, Vol. 1, No. 1, Article . Publication date: January 2020.

Appendix - Aloe: Verifying Reliability of Approximate Programs in the Presence of Recovery Mechanisms 5

APPENDIX B
1 SEMANTICS OF RELIABILITY

Aggregate semantics. We use the following aggregate semantics from Rely to define the reliability

of a program.

Definition 1 (Trace Semantics for Programs).

⟨·, ϵ⟩
τ ,p
=⇒ψ ϵ

′≡ ⟨·,ϵ .σ ,ϵ .h⟩
λ1,p1
−→ψ ...

λn,pn
−→ ψ ⟨skip,ϵ .σ ,ϵ .h⟩

where τ =λ1,...,λn , and p=
n
Π
i=1

pi

This big-step semantics is the reflexive transitive closure of the small-step global semantics for

programs and records a trace of the program. The trace semantics are defined for environments

(pairs of frames and heaps).

A trace τ ∈T →·|λ ::T is a sequence of small step global transitions. The probability of the trace

is the product of the probabilities of each transition.

Definition 2 (Aggregate Semantics for Programs).

⟨·, ϵ⟩⇓
p
ψ ϵ

′ where p=
∑
τ ∈T

pτ such that ⟨·, ϵ⟩
τ ,pτ
=⇒ψ ϵ

′

The big-step aggregate semantics enumerates over the set of all finite length traces and sums the

aggregate probability that a program starts in an environment ϵ and terminates in an environment

ϵ ′. It accumulates the probability over all possible traces that end up in the same final state.

Paired Execution Semantics. For reliability and accuracy analysis we define a paired execution
semantics that couples an original execution of a program with an approximate execution, following

the definition from Rely.

Definition 3 (Paired Execution Semantics [2]).

⟨s ,⟨ϵ,φ⟩⟩ ⇓ψ ⟨ϵ ′,φ ′⟩ such that ⟨s , ϵ⟩⇓
1ψ
ϵ ′ and φ ′(ϵ ′a)=

∑
ϵa ∈E

φ(ϵa)·pa where ⟨s , ϵa⟩⇓
pa
ψ ϵ ′a

This relation states that from a configuration ⟨ϵ,φ⟩ consisting of an environment ϵ and an

environment distribution φ ∈ Φ, the paired execution yields a new configuration ⟨ϵ ′,φ ′⟩. The

execution reaches the environment ϵ ′ from the environment ϵ with probability 1 (expressed by the

deterministic execution, 1ψ). The environment distributions φ and φ ′
are probability mass functions

that map an environment to the probability that the execution is in that environment. In particular,

φ is a distribution on environments before the execution of s whereas φ ′
is the distribution on

environments after executing s .

Reliability Transformer. Reliability predicates and the semantics of programs are connected

through the view of a program as a reliability transformer.

Definition 4 (Reliability Transformer Relation [2]).

ψ |= {Qpre }s {Qpost } ≡∀ϵ,φ,ϵ ′,φ ′. (ϵ,φ) ∈ JQpre K =⇒ ⟨s,⟨ϵ,φ⟩⟩ ⇓ψ ⟨ϵ ′,φ ′⟩ =⇒ (ϵ ′,φ ′) ∈ JQpost K

Similar to the standard Hoare triple relation, if an environment and distribution pair ⟨ϵ,φ⟩ satisfy
a reliability predicate Qpre , then the program’s paired execution transforms them into a new pair

⟨ϵ ′,φ ′⟩ that satisfy a predicate Qpost .

, Vol. 1, No. 1, Article . Publication date: January 2020.

6 Keyur Joshi, Vimuth Fernando, and Sasa Misailovic

2 CORRECTNESS OF RELIABILITY PRECONDITION GENERATION FOR THE
TRY-CHECK-RECOVER BLOCK

Theorem 1 (Correctness of Reliability Precondition Generation for the try-check-recover Block).

Ifψ |= {c ≤rrtℛ(Yt)}stry {c ≤rℛ(X)},ψ |= {c ≤rrrℛ(Yr)}sr ec {c ≤rℛ(X)}, pt is the minimum success
probability of stry , pTN , pFP , and pT P are the relevant properties of the checker f , and stry and sr ec satisfy the

dataflow constraints and perform the same computation,
thenψ |= {c ≤r (ptpTN +ptpFP rr +(1−pt)pT P rr)ℛ(Yt ∪Yr)} try{stry }check{ f }recover{sr ec } {c ≤rℛ(X)}

Proof. To prove Theorem 1, we first replace the precondition of stry with c ≤ rptℛ(Yt ∪Yr)
and that of sr ec with c ≤ rrrℛ(Yt ∪Yr). As pt ≤ rt and Yt ,Yr ⊆Yt ∪Yr , this is a sound replacement

(Proposition 2 of [2]).

The variables in X and Yt∪Yr fall into one of three categories:

(1) Variables that are neither read nor written to by the try or recover blocks.

(2) Variables that are read by the try or recover blocks.

(3) Variables that are written to by the try or recover blocks.

The variables in category 1 are transferred from the postcondition’s joint reliability predicate to

the precondition’s joint reliability predicate unchanged, as per Rely’s precondition generation

rules. Aloe requires that the try and recover blocks be idempotent – future executions of the try or

recover blocks should not be affected by the current execution. Therefore, category 2 and 3 must

be mutually exclusive – otherwise, variables written to in the current execution would affect future

executions.

Let ϵ,φ be the environment and environment distribution before executing the try-check-

recover block, and ϵ ′,φ ′
after executing the try-check-recover block. By definition, Jℛ(X)K(ϵ ′,φ ′)=∑

ϵu ∈ℰ({X },ϵ ′)φ
′(ϵu). We consider two ways in which we can reach an environment in which

variables in X are calculated correctly (ℰ({X },ϵ ′)):

(1) We start from an initial environment in which variables in Yt have been calculated correctly,

execute the try block, which calculates the variables in X correctly, and then the check passes.

(2) We start from an initial environment in which variables in Yr have been calculated correctly,

execute the try block, fail the check, and then execute the recover block, which calculates the

variables in X correctly.

The total probability of reaching a state in ℰ({X },ϵ ′) is the sum of the probabilities of these

two cases. For simplification, we can soundly replace Yt ,Yr in the two cases with Yt ∪Yr . Then
we assume we start from an environment in ℰ({Yt ∪Yr },ϵ). By definition, Jℛ(Yt ∪Yr)K(ϵ,φ) =∑
ϵu ∈ℰ({Yt∪Yr },ϵ)φ(ϵu).

Case 1: From the precondition / postcondition of the try block in isolation, we know that∑
ϵu ∈ℰ({X },ϵ ′)φ

′(ϵu) ≥
∑
ϵu ∈ℰ({Yt∪Yr },ϵ)φ(ϵu)×pt . However, within the try-check-recover block,

after a correct execution of the try block, the check passes with probability pTN . Therefore the
contribution of this case is

∑
ϵu ∈ℰ({Yt∪Yr },ϵ)φ(ϵu)×pt ×pTN .

Case 2: From the precondition / postcondition of the recover block in isolation, we know that∑
ϵu ∈ℰ({X },ϵ ′)φ

′(ϵu)≥
∑
ϵu ∈ℰ({Yt∪Yr },ϵ)φ(ϵu)×rr .

However, within the try-check-recover block, for this case, the check must fail. This happens in

two ways: either the try block executes correctly and the check fails, or the try block causes an

error and the check fails. The first sub-case happens with probability ptpFP and the second sub-case

, Vol. 1, No. 1, Article . Publication date: January 2020.

Appendix - Aloe: Verifying Reliability of Approximate Programs in the Presence of Recovery Mechanisms 7

with probability (1−pt)pT P . Therefore the contribution of this case is

∑
ϵu ∈ℰ({Yt∪Yr },ϵ)φ(ϵu)×rr ×

(ptpFP +(1−pt)pT P). The idempotency constraint on the try block ensures that rr is unchanged by

the try block’s probability of causing an error.

Combining the two cases: Adding up the probabilities of the two cases of the try-check-recover

block execution, we finally get∑
ϵu ∈ℰ({X },ϵ ′)φ

′(ϵu)≥
∑
ϵu ∈ℰ({Yt∪Yr },ϵ)φ(ϵu)×pt ×pTN +

∑
ϵu ∈ℰ({Yt∪Yr },ϵ)φ(ϵu)×rr ×(ptpFP +(1−pt)pT P)

≥
∑
ϵu ∈ℰ({Yt∪Yr },ϵ)φ(ϵu)(pt ×pTN +rr ×(ptpFP +(1−pt)pT P))

That is, Jℛ(X)K(ϵ ′,φ ′)≥ Jℛ(Yt∪Yr)K(ϵ,φ)(pt ×pTN +rr ×(ptpFP +(1−pt)pT P)).
□

APPENDIX C
1 EVALUATION

Table 1. Experimental Setup for Evaluation

Benchmark Input

PageRank 10 Iterations, randomly generated graph with 1000 nodes

Scale 512 × 512 pixel image (baboon.ppm)

Blackscholes 4K option prices from the Parsec Inputs [1]

SSSP randomly generated graph with 1000 nodes

BFS randomly generated graph with 1000 nodes

SOR 10 iteration on a 1000×1000 array

Sobel 1000×1000 array in the range [0,1]

Motion 10 blocks with 1600 pixels each

REFERENCES
[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark suite: Characterization and architectural implications.

PACT, 2008.

[2] Michael Carbin, Sasa Misailovic, and Martin C. Rinard. Verifying quantitative reliability for programs that execute on

unreliable hardware. In OOPSLA, 2013.
[3] Vimuth Fernando, Keyur Joshi, and Sasa Misailovic. Verifying safety and accuracy of approximate parallel programs via

canonical sequentialization. In OOPSLA, 2019.

, Vol. 1, No. 1, Article . Publication date: January 2020.

	Abstract
	1 Definitions
	1 Semantics of Reliability
	2 Correctness of Reliability Precondition Generation for the try-check-recover Block
	1 Evaluation
	References

